Определить м среднюю арифметическую по способу моментов. Среднее значение по способу моментов

Наиболее часто в характеристике вариационного ряда используют среднюю арифметическую.

Различают три вида средней арифметической: простая, взвешенная и вычисленная по способу моментов. Средняя арифметическая, которая рассчитана в вариационном ряду, где каждая варианта встречается только 1 раз называется средней арифметической простой (табл. 4) .Ее определяют по формуле:

где М – средняя арифметическая,

V – варианта изучаемого признака,

n –число наблюдений.

Если в исследуемом ряду одна или несколько вариант повторяются несколько раз, то вычисляют среднюю арифметическую взвешенную (табл. 2) , когда учитывается вес каждой варианты в зависимости от частоты ее встречаемости. Расчет такой средней проводят по формуле:

где М – средняя арифметическая взвешенная;

∑ - знак суммы;

V – варианты (числовые значения изучаемого признака);

P – частота, с которой встречается одна и та же варианта признака, т.е. сумма вариант с данным значением признака;

n – число наблюдений, т.е., сумма всех частот или общее число всех вариант (∑p).

Таблица 4

(Расчет простой средней арифметической)

ЧИСЛО СТУДЕНТОВ (p)
∑V = 691 n = 9
M = уд/мин.

Пример: при определений среднего пульса у студентов перед экзаменом следует сначала вычислить ∑ V * p, а затем среднюю величинуM = = 76,9 уд/мин.(табл. 5).

Нередко при большом числе наблюдений для вычисления средней арифметической взвешенной используют сгруппированный вариационный (или разбитый на равные интервалы) ряд. Такой вариационный ряд должен быть непрерывным, варианты, расположенные в определенном порядке (возрастания или убывания), следуют друг за другом.

Таблица 5

Определение среднего пульса у студентов-мужчин перед экзаменом

(Расчет взвешенной средней арифметической)

ПУЛЬС У СТУДЕНТОВ-МУЖЧИН (V) ЧИСЛО СТУДЕНТОВ (p) V * p
∑p = n = 26∑V * p = 2000 M = = 76,9 уд/мин.

При группировке вариационного ряда следует учитывать, что интервал выбирает исследователь, величина интервала зависит от цели и задач исследования.

Число групп в сгруппированном вариационном ряду определяют в зависимости от числа наблюдений.При числе наблюдений от 31 до 100 рекомендуется иметь 5-6 групп, от 101 до 300 - от 6 до 8 групп, от 300 до 1000 наблюдений можно использовать от 10 до 15 групп. Расчет интервала (i) проводится по формеле:i = ,

Vmax – максимальное значение варианты,

Vmin – минимальное значение варианты.

Расчет средней взвешенной в сгруппированном ряду (или интервальном ряду требует определения середины интервала, которую вычисляют как полусуммукрайных значений группы.(табл. 3). Расчет средней величины производят по формуле: M = = =176,7см.(табл. 6).

Таблица 6

(Расчет взвешенной средней арифметическойв сгруппированном ряду)

ЦЕНТРАЛЬНАЯ ВАРИАНТА ГРУППЫ (V 1), СМ. ЧИСЛО СТУДЕНТОВ (p) V 1 ∙ p
162 = 167 = 172 = 177 = 182 187
∑p = n =212 ∑ V 1 ∙ p = 37469 M = = = 176,74 см.

В случаях, когда варианты представлены большими числами (например, масса тела новорожденных в граммах) и имеется число наблюдений, выраженное сотнями или тысячами случаев, взвешенная средняя арифметическая может быть вычислена по способу моментов (табл. 7) по формуле:

гдеA – условно взятая средняя величина (чаще всего в качестве условной средней берется Мо);

∑ - знак суммы;

α – отклонение каждой варианты в интервалах от условной средней =

p – частота (число раз, с которым встречается одна и та же варианта признака).

αp – произведение отклонения (α) на частоту (p);

n – число наблюдений, т.е. сумма всех частот или общее число всех вариант (∑p).

i – величина интервала = (Vmax – максимальное значение варианты, Vmin – минимальное значение варианты).

Таким образом, средняя взвешенная вычисленная по способу моментов, составила 176,74 см., что практический совпало с расчетами средней обычным методом – 176,7 см.. Однако при вычислений средней по способу моментов используют простые цифры, вычисление менее громоздки, что значительно облегчает и ускоряет расчеты.

Средняя арифметическая (средняя взвешенная) имеет ряд свойств , которые используют в некоторых случаях для упрощения расчета средней и получения ориентировочной величины.

1. Средняя арифметическая занимает срединное положение в строго симметричном вариационном ряду (M = M 0 = M e) .

2. Средняя арифметическая имеет абстрактный характер и является обобщающей величиной, выявляющей закономерность.

3. Алгебраическая сумма отклонений всех вариант от средней равна нулю: ∑ (V - M) = 0. На этом свойстве основан расчет средней по способу моментов.

Таблица 7

Определение среднего роста студентов-мужчин 20-22 лет

(Методика расчета средней арифметической величины по способу моментов, i = 5)

РОСТ СТУДЕНТОВ-МУЖЧИН (V), СМ. ЦЕНТРАЛЬНАЯ ВАРИАНТА ГРУППЫ (V 1), СМ. ЧИСЛО СТУДЕНТОВ (p) α = a ∙ p
160-164 165-169 170-174 175-179 180-184 185-189 ∑p = n =212 -3 -2 -1 +1 +2 -12 -42 -47 +54 +36 ∑a∙p = -11
M= 177 +

Вариационный размах (или размах вариации) - это разница между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки рабочих составляет: в первой бригаде R=105-95=10 дет., во второй бригаде R=125-75=50 дет. (в 5 раз больше). Это говорит о том, что выработка 1-й бригады более «устойчива», но резервов роста выработки больше у второй бригады, т.к. в случае достижения всеми рабочими максимальной для этой бригады выработки, ею может быть изготовлено 3*125=375 деталей, а в 1-й бригаде только 105*3=315 деталей.
Если крайние значения признака не типичны для совокупности, то используют квартильный или децильный размахи. Квартильный размах RQ= Q3-Q1 охватывает 50% объема совокупности, децильный размах первый RD1 = D9-D1охватывает 80% данных, второй децильный размах RD2= D8-D2 – 60 %.
Недостатком показателя вариационного размаха является, но что его величина не отражает все колебания признака.
Простейшим обобщающим показателем, отражающим все колебания признака, является среднее линейное отклонение , представляющее собой среднюю арифметическую абсолютных отклонений отдельных вариант от их средней величины:

,
для сгруппированных данных
,
где хi – значение признака в дискретном ряду или середина интервала в интервальном распределении.
В вышеприведенных формулах разности в числителе взяты по модулю, иначе, согласно свойству средней арифметической, числитель всегда будет равен нулю. Поэтому среднее линейное отклонение в статистической практике применяют редко, только в тех случаях, когда суммирование показателей без учета знака имеет экономический смысл. С его помощью, например, анализируется состав работающих, рентабельность производства, оборот внешней торговли.
Дисперсия признака – это средний квадрат отклонений вариант от их средней величины:
простая дисперсия
,
взвешенная дисперсия
.
Формулу для расчета дисперсии можно упростить:

Таким образом, дисперсия равна разности средней из квадратов вариант и квадрата средней из вариант совокупности:
.
Однако, вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, поэтому ее на основе рассчитывают среднее квадратическое отклонение , которое показывает, на сколько в среднем отклоняются конкретные варианты признака от их среднего значения. Вычисляется путем извлечения квадратного корня из дисперсии:
для несгруппированных данных
,
для вариационного ряда

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность, тем более надежной (типичной) будет средняя величина.
Среднее линейное и среднее квадратичное отклонение - именованные числа, т. е. выражаются в единицах измерения признака, идентичны по содержанию и близки по значению.
Рассчитывать абсолютные показатели вариации рекомендуется с помощью таблиц.
Таблица 3 – Расчет характеристик вариации (на примере срока данных о сменной выработке рабочих бригады)


Число рабочих,

Середина интервала,

Расчетные значения

Итого:

Среднесменная выработка рабочих:

Среднее линейное отклонение:

Дисперсия выработки:

Среднее квадратическое отклонение выработки отдельных рабочих от средней выработки:
.

1 Расчет дисперсии способом моментов

Вычисление дисперсий связано с громоздкими расчетами (особенно если средняя величина выражена большим числом с несколькими десятичными знаками). Расчеты можно упростить, если использовать упрощенную формулу и свойства дисперсии.
Дисперсия обладает следующими свойствами:

  1. если все значения признака уменьшить или увеличить на одну и ту же величину А, то дисперсия от этого не уменьшится:

,

, то или
Используя свойства дисперсии и сначала уменьшив все варианты совокупности на величину А, а затем разделив на величину интервала h, получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:
,
где – дисперсия, исчисленная по способу моментов;
h – величина интервала вариационного ряда;
– новые (преобразованные) значения вариант;
А– постоянная величина, в качестве которой используют середину интервала, обладающего наибольшей частотой; либо вариант, имеющий наибольшую частоту;
– квадрат момента первого порядка;
– момент второго порядка.
Выполним расчет дисперсии способом моментов на основе данных о сменной выработке рабочих бригады.
Таблица 4 – Расчет дисперсии по способу моментов


Группы рабочих по выработке, шт.

Число рабочих,

Середина интервала,

Расчетные значения

Порядок расчета:


  1. рассчитываем дисперсию:

2 Расчет дисперсии альтернативного признака

Среди признаков, изучаемых статистикой, есть и такие, которым свойственны лишь два взаимно исключающих значения. Это альтернативные признаки. Им придается соответственно два количественных значения: варианты 1 и 0. Частостью варианты 1, которая обозначается p, является доля единиц, обладающих данным признаком. Разность 1-р=q является частостью варианты 0. Таким образом,


хi

Средняя арифметическая альтернативного признака
, т. к. p+q=1.

Дисперсия альтернативного признака
, т.к. 1-р=q
Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.
Если значения 1 и 0 встречаются одинаково часто, т. е. p=q, дисперсия достигает своего максимума pq=0,25.
Дисперсия альтернативного признака используется в выборочных обследованиях, например, качества продукции.

3 Межгрупповая дисперсия. Правило сложения дисперсий

Дисперсия, в отличие от других характеристик вариации, является аддитивной величиной. То есть в совокупности, которая разделена на группы по факторному признаку х, дисперсия результативного признака y может быть разложена на дисперсию в каждой группе (внутригрупповую) и дисперсию между группами (межгрупповую). Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучение вариации в каждой группе, а также между этими группами.

Общая дисперсия измеряет вариацию признака у по всей совокупности под влиянием всех факторов, вызвавших эту вариацию (отклонения). Она равна среднему квадрату отклонений отдельных значений признака у от общей средней и может быть вычислена как простая или взвешенная дисперсия.
Межгрупповая дисперсия характеризует вариацию результативного признака у , вызванную влиянием признака-фактора х , положенного в основу группировки. Она характеризует вариацию групповых средних и равна среднему квадрату отклонений групповых средних от общей средней :
,
где – средняя арифметическая i-той группы;
– численность единиц в i-той группе (частота i-той группы);
– общая средняя совокупности.
Внутригрупповая дисперсия отражает случайную вариацию, т. е. ту часть вариации, которая вызвана влиянием неучтенных факторов и не зависит от признака-фактора, положенного в основу группировки. Она характеризует вариацию индивидуальных значений относительно групповых средних, равна среднему квадрату отклонений отдельных значений признака у внутри группы от средней арифметической этой группы (групповой средней) и вычисляется как простая или взвешенная дисперсия для каждой группы:
или ,
где – число единиц в группе.
На основании внутригрупповых дисперсий по каждой группе можно определить общую среднюю из внутригрупповых дисперсий :
.
Взаимосвязь между тремя дисперсиями получила название правила сложения дисперсий , согласно которому общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий:

Пример . При изучении влияния тарифного разряда (квалификации) рабочих на уровень производительности их труда получены следующие данные.
Таблица 5 – Распределение рабочих по среднечасовой выработке.



п/п

Рабочие 4-го разряда

Рабочие 5-го разряда

Выработка
рабочего, шт.,

Выработка
рабочего, шт.,

1
2
3
4
5
6

7
9
9
10
12
13

7-10=-3
9-10=-1
-1
0
2
3

9
1
1
0
4
9

1
2
3
4

14
14
15
17

14-15=-1
-1
0
2

1
1
0
4

В данном примере рабочие разделены на две группы по факторному признаку х – квалификации, которая характеризуется их разрядом. Результативный признак – выработка – варьируется как под его влиянием (межгрупповая вариация), так и за счет других случайных факторов (внутригрупповая вариация). Задача заключается в измерении этих вариаций с помощью трех дисперсий: общей, межгрупповой и внутригрупповой. Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х . Остальная часть общей вариации у вызвана изменением прочих факторов.
В примере эмпирический коэффициент детерминации равен:
или 66,7 %,
Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% – влиянием прочих факторов.
Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:

Эмпирическое корреляционное отношение , как и , может принимать значения от 0 до 1.
Если связь отсутствует, то =0. В этом случае =0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак – фактор не влияет на образование общей вариации.
Если связь функциональная, то =1. В этом случае дисперсия групповых средних равна общей дисперсии (), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.
Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.

В примере , что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.

М ср - рассчитанная при помощи метода моментов = 61,6 кг

Средняя арифметическая величина обладает тремя свой­ствами.

1. Средняя занимает серединное положение в вариационном ряду . В строго симметричном ряду: М = М 0 =М е.

2. Средняя является обобщающей величиной и за средней не видны случайные колебания, различия в индивидуальных данных, она вскрывает то типичное, что характерно для всей совокуп­ности . К средней обращаются всякий раз, когда надо исклю­чить случайное влияние от­дельных факторов, выявить об­щие черты, существующие за­кономерности, получить полное и глубокое представление о наиболее общих и характерных особенностях всей группы.

3. Сумма отклоне­ний всех вариант от средней равна нулю : S (V-M)= 0 . Это происходит потому, что средняя величина превышает размеры одних вариант и мень­ше размеров других вариант.

Иначе говоря, истинное отклонение вариант от истинной средней (d =v-М) может быть положительной и отрицательной величи­ной, поэтому сумма S всех "+"d и "-"d равна нулю.

Данное свойство средней используется при проверке правильности расчетов М. Если сумма отклонений вариант от средней равна нулю, то можно сделать вывод, что средняя вычислена правильно. На этом свойстве основан способ моментов для определения М. Ведь если условная средняя А будет равна истинной М, то сумма отклонений вариант от условной средней будет равна нулю.

Роль средних величин в биологии чрезвычайно велика. С одной стороны их используют для характеристики явлений в целом, с другой - они необходимы для оценки отдельных величин. При сравнении отдельных величин со средними получают ценные харак­теристики для каждой из них. Использование средних величин требует строгого соблюдения принципа однородности совокупности. Нарушение этого принципа искажает представление о реальных процессах.

Вычисление средних из неоднородной в социально-экономическом отношении совокупности делает их фик­тивными, искаженными. Следовательно, для того чтобы правильно использовать средние величины, надо быть уверенным в том, что они характеризуют однородные статистические совокупности.

ХАРАКТЕРИСТИКА РАЗНООБРАЗИЯ ПРИЗНАКА В

СТАТИСТИЧЕСКОЙ СОВОКУПНОСТИ

Величина того или иного признака неодинакова у всех членов совокупности, несмотря на ее относительную однородность. Напри­мер, в группе детей, однородной по возрасту, полу и месту житель­ства, рост каждого ребенка отличается от роста сверстников. То же можно сказать о числе посещений, сделанных отдельными лицами в поликлинику, об уровне белка крови у каждого больного ревматизмом, об уровне артериального давления у отдельных лиц, больных гипертонической болезнью и т. п. В этом проявляется разнообразие, колеблемость признака в изучаемой совокупности. Вариабельность демонстративно можно представить на примере роста в группах подростков.



Статистика позволяет охарактеризовать это специальными крите­риями, определяющими уровень разнообразия каждого признака в той или иной группе. К таким критериям относятся лимит (lim), амплитуда ряда (Am), среднее квадратическое отклонение (s) и коффициент вариации (C v). Так как каждый из этих крите­риев имеет свое самостоятельное значение, то следует остановиться на них отдельно.

Лимит - опреде­ляется крайними значе­ниями вариант в вариа­ционном ряду

Амплитуда (Am) - разность край­них вариант

Лимит и амплитуда - дают определен­ную информацию о степени разнообразия роста в каждой группе. Однако как лимит, так и амплитуда ряда обладает одним существенным недостатком. Они учитывают только разно­образие крайних вариант и не позволяют получить информацию о разнообразии признака в совокупности с учетом ее внутренней структуры. Дело в том, что разнообразие проявляется не столько в крайних вариантах, сколько при анализе всей внутренней структуры группы. Поэтому этими критериями можно пользоваться для при­ближенной характеристики разнообразия, особенно при малом чис­ле наблюдений (n<30).

Наиболее полную характеристику разноо­бразию признака в совокупности дает так называемое среднее квадратическое отклоне­ние , обозначаемое греческой буквой "сигма" - s.

Существует два способа расчета среднего квадратического отклонения : среднеарифметический и способ моментов .

При сред­неарифметическом способе расчета применяют формулу, где d - истинное отклонение вариант от истинной средней (V-M).

Формула используется при небольшом числе наблюдений (n<30), когда в вариационном ряду все частоты р= 1.

При р > 1 используют формулу такого вида:

При наличии вычислительной техники эту формулу приме­няют и при большом количестве наблюдений.

Эта формула предназначена для определения "сигмы" по способу моментов:

где: a - условное отклонение от условной средней (V-A ); p - частота встречаемости для варианты; n - число вариант; i - величина интервала между группами.

Этот способ применяется в тех случаях, когда нет вычислитель­ной техники, а вариационный ряд громоздкий как за счет большого числа наблюдений, так и за счет вариант, выраженных многознач­ными числами. При числе наблюдений, равном 30 и менее, в момен­те второй степени п заменяют за (п -1).

Как видно из формулы среднего квадратичного отклонения (4), в знаменателе стоит (п -1), т.е. при числе наблюдений, равном или меньшем 30 (n£30), необходимо в знаменатель формулы брать (п -1). Если при определении средней арифметической М учиты­вают все элементы ряда, то, рассчитывая а, надо брать не все случаи, а на единицу меньше (п-1).

При большом числе наблюдений (n>30) в знаменатель формулы берут п, так как единица не изменяет результаты расчета и поэтому автоматически опускается.

Следует обратить внимание на то, что среднее квадратическое отклонение - именованная величина , поэтому оно должно иметь обозначение, общее для вариант и средней арифметической вели­чины (размерность – кг, см. км и др).

Расчет среднего квадратического отклонения по способу момен­тов производится после расчета средней величины.

Существует еще один критерий, характеризующий уровень раз­нообразия величин признака в совокупности, - коэффициент ва­риации .

Коэффициент вариации (Сv) - является относительной мерой разнообразия, так как исчисляется как процентное отноше­ние среднего квадратического отклонения (а) к средней арифме­тической величине (М). Формула коэффициента вариации такова:

Для ориентировочной оценки степени разнообразия признака пользуются следующими градациями коэффициента вариации. Если коэффициент составляет более 20%, то отмечают сильное разно­образие; при 20-10% - среднее, и если коэффициент менее 10%, то считают, что разнообразие слабое.

Коэффициент вариации применяют при сравнении степени раз­нообразия признаков, имеющих различия в величине признаков или неодинаковую их размерность. Допустим, необходимо сравнить степень разнообразия массы тела у новорожденных и 5-летних детей. Понятно, что у новорожденных "сигма" всегда будет меньше, чем у семилетних детей, так как меньше их индивидуальная масса. Среднее квадратическое отклонение будет меньше там, где меньше величина самого признака. В этом случае для определения различия в степени разнообразия необходимо ориентироваться не на среднее квадратическое отклонение, а на относительную меру разнообразия - коэффициент вариации Сv.

Большое значение коэффициент вариации также имеет для оцен­ки и сопоставления степени разнообразия нескольких признаков с разной размерностью. По среднему квадратическому отклонению нельзя еще судить о различии в сте­пени разнообразия указанных признаков. Для этого необходимо использовать коэффициент вариации – Сv.

Среднее квадратическое отклонение связано со структурой ряда распределения признака. Схематич­но это можно изобразить следующим образом.

Теорией статистики доказано, что при нормальном распределе­нии в пределах М±s находится 68% всех случаев, в пределах М±2s - 95,5% всех случаев, а в пределах М±3s - 99,7% всех случаев, составляющих совокупность. Таким образом, М±3s охва­тывает почти весь вариационный ряд.

Это теоретическое положение статистики о закономерностях структуры ряда имеет огромное значение для практического при­менения среднего квадратического отклонения. Можно восполь­зоваться этим правилом для выяснения - вопроса о типичности средней величины. Если 95% всех вариант находятся в пределах М±2s, то средняя - является характерной для данного ряда и не требуется увеличивать число наблюдений в совокупности. Для опре­деления типичности средней сравнивается фактическое распреде­ление с теоретическим, путем расчета сигмальных отклонений.

Практическое значение среднего квадратического отклонения заключается также в том, что зная М и s , можно построить необходимые вариационные ряды для практического использования. Сигму (s ) также используют для сравнения степени разнообразия однород­ных признаков, например при сравнении колебаний (вариабель­ности) роста детей в городе и селе местности. Зная сигму (s ), можно рассчитать коэффициент вариации (Сv), необходимой для сравнения степени разнообразия признаков, выраженных в различных единицах измерения (сантиметрах, килограммах и др.). Это позволяет выявить более устойчивые (постоянные) и менее устойчивые признаки в совокупности.

Сравнивая коэффициенты вариации (C v), можно сделать выводы о том, что является наиболее устойчивым признаком в совокупности признаков. Среднее квадратическое отклонение (s) используется также для оценки отдельных признаков у одного объекта. Стандартное отклонение указывает, на сколько сигм (s ) от средней (М) отклоняются индивидуальные измерения.

Среднее квадратическое отклонение (s) может быть исполь­зовано в биологии и экологии при разработке проблем нормы и патологии.

Наконец, среднее квадратическое отклонение является важным компонентом формулы т м - сред­ней ошибки средней арифметической (ошибки ре­презентативности):

где т м - средняя ошибка средней арифметической величины (ошибка репрезентативности), п - число наблюдений.

Репрезентативность. Важнейшие теоретические основы репрезентативности были освещены выше в разделе, посвященном выборочной и генеральной совокупности. Репрезентативность означает представительность в выборочной совокупности всех учитываемых признаков (пол, возраст, профессия, стаж и др.) единиц наблюдения, составляющих генеральную совокупность. Достигается эта репрезентативность выборочной совокупности по отношению к генеральной с помощью специальных методов отбора, которые излагаются ниже.

Оценка достоверности результатов исследования базируется на теоретических основах репрезентативности.

ОЦЕНКА ДОСТОВЕРНОСТИ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ

Под достоверностью статистических показа­телей следует понимать степень их соответствия отображаемой ими действительности. Достоверными результатами считаются те, которые не искажают и правильно отражают объективную реальность.

Оценить достоверность результатов исследования означает определить, с какой вероятностью возможно перенести результаты, полученные на выборочной совокупности, на всю генеральную совокупность.

В большинстве исследований исследователю приходится, как правило, иметь дело с частью изучаемого явления, а выводы по результатам такого исследования переносить на все явление в целом - на генеральную совокупность.

Таким образом, оценка достоверности необходима для того, чтобы по части явления должно было бы судить о явлении в целом, о его закономерностях.

Оценка достоверности результатов исследования предусматривает определение:

1) ошибок репрезентативности (средних ошибок средних арифметических и относительных величин) - т ;

2) доверительных границ средних (или относительных) величин;

3) достоверности разности средних (или относительных) величин
(по критерию
t );

4) достоверности различия сравниваемых групп по критерию c 2 .

1. Определение средней ошибки средней (или относительной) величины (ошибки репре­зентативности) - т.

Ошибка репрезентативности (m ) является важнейшей стати­стической величиной, необходимой для оценки достоверности ре­зультатов исследования. Эта ошибка возникает в тех случаях, когда требуется по части охарактеризовать явление в целом. Эти ошибки неизбежны. Они проистекают из сущности выбороч­ного исследования; генеральная совокупность может быть охарак­теризована по выборочной совокупности только с некоторой по­грешностью, измеряемой ошибкой репрезентативности.

Ошибки репрезентативности нельзя смешивать с обычным пред­ставлением об ошибках: методических, точности измерения, ариф­метических и др.

По величине ошибки репрезентативности определяют, насколько результаты, полученные при выборочном наблюдении, отличаются от результатов, которые могли бы быть получены при проведении сплошного исследования всех без исключения элементов генераль­ной совокупности.

Этот единственный вид ошибок, учитываемых статистическими методами, которые не могут быть устранены, если не осуществлен переход на сплошное изучение. Ошибки репрезентативности можно свести к достаточно малой величине, т. е. к величине допустимой погрешности. Делается это путем привлечения в выборку достаточ­ного количества наблюдений (п).

Каждая средняя величина - М (средняя длительность лечения, средний рост, средняя масса тела, средний уровень белка крови и др.), а также каждая относительная величина - Р (уровень ле­тальности, заболеваемости и др.) должны быть представлены со своей средней ошибкой - т. Так, средняя арифметическая вели­чина выборочной совокупности (М) имеет ошибку репрезентатив­ности, которая называется средней ошибкой средней арифметической (m м) и определяется по формуле:

Как видно из этой формулы, величина средней ошибки средней арифметической прямо пропорциональна степени разнообразия признака и обратно пропорциональна корню квадратному из числа наблюдений. Следовательно, уменьшение величины этой ошибки при определении степени разнообразия (s ) возможно путем увели­чения числа наблюдений.

На этом принципе основан метод определения достаточного числа наблюдений для выборочного исследования.

Относительные величины (Р), полученные при выборочном исследовании, также имеют свою ошибку репрезентативности, которая называется средней ошибкой относительной величины и обозначается m р

Для определения средней ошибки относительной величины (Р) используется следующая формула:

где Р - относительная величина. Если показатель выражен в про­центах, то q=100-P, если Р- в промиллях, то q=1000-P, если Р- в продецимиллях, то q= 10000-Р и т.д.; п - число наблю­дений. При числе наблюдений менее 30 в знаменатель следует взять (п – 1 ).

Каждая средняя арифметическая или относительная величина, полученная на выборочной совокупности, должна быть представ­лена со своей средней ошибкой. Это дает возможность" рассчи­тать доверительные границы средних и относительных величин, а также определить достоверность разности сравниваемых пока­зателей (результатов исследования).

А – условная средняя (чаще других повторяющаяся в вариационном ряду)

а – условное отклонение от условной средней (ранг)

i – интервал

1-ый этап - определение середины групп;

2-ой этап – ранжирование групп: 0 присваивается группе, частота встречаемости врианты в которой – наибольшая. Т.е. в данном случае 7-11 (частота -32). Вверх от данной группы ранжирование производится прибавляя (-1). Вниз – прибавка (+1).

3-ий этап – определение условной моды (условная средняя). А –это середина модального интервала. В нашем случае модальным интервалом является 7 -11, таким образом А = 9.

4-ый этап –определение интервала. Интервал во всех группах ряда одинаков и равен 5. i = 5/

5-й этап –определение общего числа наблюдений. n = ∑p = 103.

Подставляем, полученные данные в формулу:

Задания для самостоятельной работы

Используя данные сгруппированного вариационного ряда рассчитайте среднюю арифметическую по способу моментов.

Вариант №1

Вариант №2

Вариант №3

Вариант №4

Вариант №5

Вариант №6



Вариант №7

Вариант №8

Вариант №9

Вариант №10

Вариант №11

Вариант №12

Задача №4 Определение моды и медианы в не сгруппированном вариационном ряду с нечетным количеством вариант

Сроки стационарного лечения больных детей в днях: 15, 14, 18, 17, 16, 20, 19, 16, 14, 16, 17, 12, 18, 19, 20.

Для определения моды в вариационном ряду ранжирование ряда необязательно. Однако, прежде чем определять медиану, необходимо выстроить вариационный ряд в порядке возрастания или убывания.

12, 14, 14, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20.

Мода = 16. Т.к. вариант 16 встречается наибольшее число раз (3 раза).

В случае если вариант, имеющих наибольшую частоту встречаемости несколько, то в вариационном ряду может быть указано две и более Моды.

Медиана в ряду с нечетным количеством определяется по формуле:

8 –это порядковый номер медианы в ранжированном вариационном ряду,

т.о. Ме = 17.

Задача №5 Определение моды и медианы в не сгруппированном вариационном ряду с четным количеством вариант.



На основе данных, приведенных в задании, требуется найти моду и медиану

Сроки стационарного лечения больных детей в днях: 15, 14, 18, 17, 16, 20, 19, 16, 14, 16, 17, 12, 18, 19, 20, 11

Строим ранжированный вариационный ряд:

11, 12, 14, 14, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20

У нас имеется два срединных числа 16 и 17. В таком случае медиана находится как среднее арифметическое между ними. Me = 16,5.

Методы вычисления средней арифметической (средней арифметической простой и взвешенной, по способу моментов)

Определяем средние величины:

Мода (Мо) =11, т.к. данная варианта встречается в вариационном ряду наиболее часто (р=6).

Медиана (Ме) - порядковый номер варианты занимающей срединное положение = 23, это место в вариационном ряду занимает варианта равная 11. Средняя арифметическая (М) позволяет наиболее полно охарактеризовать средний уровень изучаемого признака. Для вычисления средней арифметической используется два способа: среднеарифметический способ и способ моментов.

Если частота встречаемости каждой варианты в вариационном ряду равна 1, то рассчитывают среднюю арифметическую простую, используя среднеарифметический способ: М = .

Если частота встречаемости вариант в вариационном ряду отличается от 1, то рассчитывают среднюю арифметическую взвешенную, по среднеарифметическому способу:

По способу моментов: А - условная средняя,

М = A + =11 += 10.4 d=V-A, A=Mo=11

Если число вариант в вариационном ряду более 30, то строится сгруппированный ряд. Построение сгруппированного ряда:

1) определение Vmin и Vmax Vmin=3, Vmax=20;

2) определение количества групп (по таблице);

3) расчет интервала между группами i = 3;

4) определение начала и конца групп;

5) определение частоты вариант каждой группы (таблица 2).

Таблица 2

Методика построения сгруппированного ряда

Длительность

лечения в днях

n=45 p=480 p=30 2 p=766

Преимущество сгруппированного вариационного ряда заключается в том, что исследователь работает не с каждой вариантой, а только с вариантами, являющимися средними для каждой группы. Это позволяет в значительной степени облегчить расчеты средней.

Величина того или иного признака неодинакова у всех членов совокупности, несмотря на ее относительную однородность. Данную особенность статистической совокупности характеризует одно из групповых свойств генеральной совокупности - разнообразие признака . Например, возьмем группу мальчиков 12 лет и измерим их рост. После проведенных расчетов средний уровень данного признака составит 153 см. Но средняя характеризует общую меру изучаемого признака. Среди мальчиков данного возраста есть мальчики, рост которых составляет 165 см или 141 см. Чем больше мальчиков будут иметь рост отличный от 153 см, тем больше будет разнообразие этого признака в статистической совокупности.

Статистика позволяет охарактеризовать данное свойство следующим критериями:

лимит (lim),

амплитуда (Amp),

среднеквадратическое отклонение (у),

коэффициент вариации (Сv).

Лимит (lim) определяется крайними значениями вариант в вариационном ряду:

lim=V min /V max

Амплитуда (Amp) - разность крайних вариант:

Amp=V max -V min

Данные величины учитывают только разнообразие крайних вариант и не позволяют получить информацию о разнообразии признака в совокупности с учетом ее внутренней структуры. Поэтому данными критериями можно пользоваться для приближенной характеристики разнообразия, особенно при малом числе наблюдений (n<30).

вариационный ряд медицинская статистика