Метод математической индукции math us. Принцип математической индукции

Савельева Екатерина

В работе рассматривается применение метода математической индукции в решении задач на делимость, к суммированию рядов. Рассматриваются примеры применения метода математической индукции к доказательству неравенств и к решению геометрических задач. Работа иллюстрирована презентацией.

Скачать:

Предварительный просмотр:

Министерство науки и образования РФ

Государственное образовательное учреждение

средняя общеобразовательная школа № 618

По курсу: алгебра и начала анализа

Теме проектной работы

«Метод математической индукции и его применение к решению задач»

Работу выполнила : Савельева Е, 11В класс

Руководитель : Макарова Т.П., учитель математики ГОУ СОШ №618

1. Введение.

2.Метод математической индукции в решении задач на делимость.

3.Применение метода математической индукции к суммированию рядов.

4.Примеры применения метода математической индукции к доказательству неравенств.

5.Применение метода математической индукции к решению геометрических задач.

6.Список использованной литературы.

Введение

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом - частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному. Метод математической индукции можно сравнить с прогресс-сом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно. Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени.А ведь это так важно - уметь размышлять индуктивно. Применение этого принципа при решении задач и доказательстве теорем находится в одном ряду с рассмотрением в школьной практике и других математических принципов: исключенного третьего, включения-исключения, Дирихле и др. В этом реферате содержатся задачи из разных разделов математики, в которых основным инструментом является использование метода математической индукции. Говоря о важ-ности этого метода, А.Н. Колмогоров отмечал, что «понимание и умение применять принцип математической индукции является хорошим критерием зрелости, которая совершенно необходима математику». Метод индукции в широком его понимании состоит в переходе от частных наблюдений к универсальной, общей закономерности или обшей формулировке. В таком толковании метод — это, конечно, основной прием проведения исследований в любой экспериментальной естественнонаучной

деятельности человека. Метод (принцип) математической индукции в простейшей его форме применяется тогда, когда нужно доказать некоторое утверждение для всех натуральных чисел.

Задача 1. В свой статье «Как я стал математиком» А.Н. Колмогоров пишет: «Радость математического «открытия» я познал рано, подметив в возрасте пяти-шести лет закономерность

1 =1 2 ,

1 + 3 = 2 2 ,

1 + 3 + 5 = З 2 ,

1 + 3 + 5 + 7 = 4 2 и так далее.

В школе издавался журнал "Весенние ласточки". В нем мое открытие было опубликовано...»

Какое именно доказательство было приведено в этом журнале, мы не знаем, но началось все с частных наблюдений. Сама гипотеза, которая, наверняка, возникла после обнаружения этих частных равенств, состоит в том, что формула

1 + 3 + 5 + ... + (2n - 1) = п 2

верна при любом заданном числе п = 1, 2, 3, ...

Для доказательства этой гипотезы достаточно установить два факта. Во-первых, для п = 1 (и даже для п = 2, 3, 4) нужное утверждение верно. Во-вторых, предположим, что утверждение верно при п = к, и убедимся, что тогда оно верно и для п = к + 1:

1 + 3 + 5+…+ (2к - 1) + (2к + 1) = (1 + 3 + 5 + ... + (2к - 1)) + (2к + 1) = к 2 + (2к + 1) = (к + I) 2 .

Значит, доказываемое утверждение верно для всех значений п: для п = 1 оно верно (это проверено), а в силу второго факта — для п = 2, откуда для п = 3 (в силу того же, второго факта) и т.д.

Задача 2. Рассмотрим все возможные обыкновенные дроби с числителем 1 и любым (целым положи-

тельным) знаменателем: Доказать,что для любого п > 3 можно представить единицу в виде суммы п различных дробей такого вида.

Решение, Проверим сначала данное утверждение при п = 3; имеем:

Следовательно, базовое утверждение выполнено

Предположим теперь, что интересующее нас утверждение верно для какого-то числа к, и докажем, что оно верно и для следующего за ним числа к + 1. Другими словами, предположим, что существует представление

в котором k слагаемых и все знаменатели разные. Докажем, что тогда можно получить представление единицы в виде суммы из к + 1 дробей нужного вида. Будем считать, что дроби убывают, то есть знаменатели (в представлении единицы суммой к слагаемых) возрастают слева направо так, что т — наибольший из знаменателей. Мы получим нужное нам представление в виде суммы + 1)-й дроби, если разобьем одну дробь, например последнюю, на две. Это можно сделать, так как

И поэтому

Кроме того, все дроби остались различными, так как т было наибольшим знаменателем, а т + 1 > т , и

т(т + 1) > т.

Таким образом, нами установлено:

  1. при п = 3 данное утверждение верно;
  1. если интересующее нас утверждение верно для к,
    то оно верно и для к + 1.

На этом основании мы можем утверждать, что рассматриваемое утверждение верно для всех натуральных чисел, начиная с трех. Более того, из приведенного доказательства следует и алгоритм отыскания нужного разбиения единицы. (Какой это алгоритм? Представьте число 1 в виде суммы 4, 5, 7 слагаемых самостоятельно.)

При решении предыдущих двух задач были сделаны два шага. Первый шаг называют базисом индукции, второй — индуктивным переходом или шагом индукции. Второй шаг наиболее важен, и он включает в себя предположение (утверждение верно при п = к) и заключение (утверждение верно при п = к + 1). Сам параметр п называется параметром индукции. Эта логическая схема (прием), позволяющая заключить, что рассматриваемое утверждение верно для всех натуральных чисел (или для всех, начиная с некоторого), так как справедливы и базис, и переход, называется принципом математической индукции, на котором и основан метод математической индукции. Сам термин «индукция» происходит от латинского слова induktio (наведение), которое означает переход от единичного знания об отдельных предметах данного класса к общему выводу о всех предметах данного класса, что является одним из основных методов познания.

Принцип математической индукции, именно в привычной форме двух шагов, впервые появился в 1654 году в работе Блеза Паскаля «Трактат об арифметическом треугольнике», в которой индукцией доказывался простой способ вычисления числа сочетаний (биномиальных коэффициентов). Д. Пойа в книге цитирует Б. Паскаля с небольшими изменениями, данными в квадратных скобках:

«Несмотря на то, что рассматриваемое предложение [явная формула для биномиальных коэффициентов] содержит бесчисленное множество частных случаев, я дам для нее совсем короткое доказательство, основанное на двух леммах.

Первая лемма утверждает, что предположение верно для основания — это очевидно. [При п = 1 явная формула справедлива...]

Вторая лемма утверждает следующее: если наше предположение верно для произвольного основания [для произвольного тг], то оно будет верным и для следующего за ним основания [для п + 1].

Из этих двух лемм необходимо вытекает справедливость предложения для всех значений п. Действительно, в силу первой леммы оно справедливо для п = 1; следовательно, в силу второй леммы оно справедливо для п = 2; следовательно, опять-таки в силу второй леммы, оно справедливо для п = 3 и так до бесконечности».

Задача 3. Головоломка «Ханойские башни» состоит из трех стержней. На одном из стержней находится пирамидка (рис. 1), состоящая из нескольких колец разного диаметра, уменьшающихся снизу вверх

Рис 1

Эту пирамидку нужно переместить на один из других стержней, перенося каждый раз только одно кольцо и не помещая большее кольцо на меньшее. Можно ли это сделать?

Решение. Итак, нам необходимо ответить на вопрос: можно ли переместить пирамидку, состоящую из п колец разного диаметра, с одного стержня на другой, соблюдая правила игры? Теперь задача нами, как говорят, параметризована (введено в рассмотрение натуральное число п), и ее можно решать методом математической индукции.

  1. База индукции. При п = 1 все ясно, так как пирамидку из одного кольца очевидно можно переместить на любой стержень.
  2. Шаг индукции. Предположим, что мы умеем перемещать любые пирамидки с числом колец п = к.
    Докажем, что тогда мы сможем переместить и пира мидку с п = к + 1.

Пирамидку из к колец, лежащих на самом большом + 1)-м кольце, мы можем, согласно предположению, переместить на любой другой стержень. Сделаем это. Неподвижное + 1)-е кольцо не будет нам мешать провести алгоритм перемещения, так как оно самое большое. После перемещения к колец, переместим это самое большое + 1)-е кольцо на оставшийся стержень. И затем опять применим известный нам по индуктивному предположению алгоритм перемещения к колец, и переместим их на стержень с лежащим внизу + 1)-м кольцом. Таким образом, если мы умеем перемещать пирамидки с к кольцами, то умеем перемещать пирамидки и с к + 1 кольцами. Следовательно, согласно принципу математической индукции, всегда можно переместить нужным образом пирамидку, состоящую из п колец, где п > 1.

Метод математической индукции в решении задач на делимость.

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Задача 4 . Если n - натуральное число, то число четное.

При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как, a 2k - четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность.Значит, четно при всех натуральных значениях n.

Задача 3. Доказать, что число З 3 + 3 - 26n — 27 при произвольном натуральном п делится на 26 2 без остатка.

Решение. Предварительно докажем по индукции вспомогательное утверждение, что 3 3n+3 — 1 делится на 26 без остатка при п > 0.

  1. База индукции. При п = 0 имеем: З 3 - 1 = 26 —делится на 26.

Шаг индукции. Предположим, что 3 3n + 3 - 1 делится на 26 при п = к, и докажем, что в этом случае утверждение будет верно при п = к + 1. Так как 3

то из индуктивного предположения заключаем, что число 3 3k + 6 - 1 делится на 26.

Теперь докажем утверждение, сформулированное в условии задачи. И снова по индукции.

  1. База индукции. Очевидно, что при п = 1 утверждение верно: так как 3 3+3 - 26 - 27 = 676 = 26 2 .
  2. Шаг индукции. Предположим, что при п = к
    выражение 3 3k + 3 - 26k - 27 делится на 26 2 без остатка, и докажем, что утверждение верно при п = к + 1,
    то есть что число

делится на 26 2 без остатка. В последней сумме оба слагаемых делятся без остатка на 26 2 . Первое — потому что мы доказали делимость выражения, стоящего в скобках, на 26; второе — по предположению индукции. В силу принципа математической индукции, нужное утверждение полностью доказано.

Применение метода математической индукции к суммированию рядов.

Задача 5. Доказать формулу

N - натуральное число.

Решение.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим

Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Задача 6. На доске написаны два числа: 1,1. Вписав между числами их сумму, мы получим числа 1, 2, 1. Повторив эту операцию еще раз, получим числа 1, 3, 2, 3, 1. После трех операций будут числа 1, 4, 3, 5, 2, 5, 3, 4, 1. Какова будет сумма всех чисел на доске после 100 операций?

Решение. Выполнять все 100 операций было бы очень трудоемким и долгим занятием. Значит, нужно попытаться найти какую-то общую формулу для суммы S чисел после п операций. Посмотрим на таблицу:

Заметили ли вы здесь какую-нибудь закономерность? Если нет, можно сделать еще один шаг: после четырех операций будут числа

1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1,

сумма которых S 4 равна 82.

В действительности можно не выписывать числа, а сразу сказать, как изменится сумма после добавления новых чисел. Пусть сумма была равна 5. Какой она станет, когда добавятся новые числа? Разобьем каждое новое число в сумму двух старых. Например, от 1, 3, 2, 3, 1 мы переходим к 1,

1 + 3, 3, 3 + 2, 2, 2 + 3, 3, 3 + 1, 1.

То есть каждое старое число (кроме двух крайних единиц) входит теперь в сумму три раза, поэтому новая сумма равна 3S - 2 (вычитаем 2, чтобы учесть недостающие единицы). Поэтому S 5 = 3S 4 - 2 = 244, и вообще

Какова же общая формула? Если бы не вычитание двух единиц, то каждый раз сумма увеличивалась бы в три раза, как в степенях тройки (1, 3, 9, 27, 81, 243, ...). А наши числа, как теперь видно, на единицу больше. Таким образом, можно предположить, что

Попробуем теперь доказать это по индукции.

База индукции. Смотри таблицу (для п = 0, 1, 2, 3).

Шаг индукции. Предположим, что

Докажем тогда, что S к + 1 = З к + 1 + 1.

Действительно,

Итак, наша формула доказана. Из нее видно, что после ста операций сумма всех чисел на доске будет равна З 100 + 1.

Рассмотрим один замечательный пример применения принципа математической индукции, в котором сначала нужно ввести два натуральных параметра и затем провести индукцию по их сумме.

Задача 7. Доказать, что если = 2, х 2 = 3 и для всякого натурального п > 3 имеет место соотношение

х п = Зх п - 1 - 2х п - 2 ,

то

2 п - 1 + 1, п = 1, 2, 3, ...

Решение. Заметим, что в этой задаче исходная последовательность чисел {х п } определяется по индукции, поскольку члены нашей последовательности, кроме двух первых, задаются индуктивно, то есть через предыдущие. Так заданные последовательности называют рекуррентными, и в нашем случае эта последовательность определяется (заданием первых двух ее членов) единственным образом.

База индукции. Она состоит из проверки двух утверждений: при п = 1 и п = 2.В обоих случаях утверждение справедливо по условию.

Шаг индукции. Предположим, что для п = к - 1 и п = к утверждение выполнено, то есть

Докажем тогда справедливость утверждения для п = к + 1. Имеем:

х 1 = 3(2 + 1)- 2(2 + 1) = 2+1, что и требовалось доказать.

Задача 8. Доказать, что любое натуральное число можно представить в виде суммы нескольких различных членов рекуррентной последовательности чисел Фибоначчи:

при к > 2.

Решение. Пусть п — натуральное число. Будем проводить индукцию по п.

База индукции. При п = 1 утверждение справедливо, поскольку единица сама является числом Фибоначчи.

Шаг индукции. Предположим, что все натуральные числа, меньшие некоторого числа п, можно представить в виде суммы нескольких различных членов последовательности Фибоначчи. Найдем наибольшее число Фибоначчи F т , не превосходящее п; таким образом, F т п и F т +1 > п.

Поскольку

По предположению индукции число п- F т может быть представлено в виде суммы 5 нескольких различных членов последовательности Фибоначчи, причем из последнего неравенства следует, что все члены последовательности Фибоначчи, участвующие в сумме 8, меньше F т . Поэтому разложение числа п = 8 + F т удовлетворяет условию задачи.

Примеры применения метода математической индукции к доказательству неравенств.

Задача 9. (Неравенство Бернулли.) Докажите, что при х > -1, х 0, и при целом п > 2 справедливо неравенство

(1 + х) п > 1 + хп.

Решение. Доказательство снова будем проводить по индукции.

1. База индукции. Убедимся в справедливости неравенства при п = 2. Действительно,

(1 + х) 2 = 1 + 2х + х 2 > 1 + 2х.

2. Шаг индукции. Предположим, что для номера п = к утверждение справедливо, то есть

(1 + х) к > 1 + хк,

Где к > 2. Докажем его при п = к + 1. Имеем: (1 + х) к + 1 = (1 + х) к (1 + х)>(1 + кх){1 + х) =

1 + (к + 1)х + кх 2 > 1 + (к + 1)х.

Итак, на основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого п > 2.

Не всегда в условиях задач, решаемых с помощью метода математической индукции, бывает четко сформулирован общий закон, который нужно доказывать. Иногда приходится путем наблюдений частных случаев сначала обнаружить (догадаться), к какому общему закону они приводят, и только потом доказывать высказанную гипотезу методом математической индукции. Кроме того, переменная индукции может быть замаскированной, и прежде, чем решать задачу, необходимо определить, по какому параметру будет проводиться индукция. В качестве примеров рассмотрим следующие задачи.

Задача 10. Доказать, что

при любом натуральном п > 1.

Решение, Попробуем доказать это неравенство методом математической индукции.

Базис индукции проверяется без труда:1+

По предположению индукции

и нам остается доказать, что

Если воспользоваться индуктивным предположением, то мы будем утверждать, что

Хотя это равенство на самом деле верно, оно не дает нам решения задачи.

Попробуем доказать более сильное утверждение, чем это требуется в исходной задаче. А именно, докажем, что

Может показаться, что доказывать это утверждение методом индукции дело безнадежное.

Однако при п = 1 имеем: утверждение верно. Для обоснования индуктивного шага предположим, что

и докажем тогда, что

Действительно,

Таким образом, нами доказано более сильное утверждение, из которого сразу же следует утверждение, содержащееся в условии задачи.

Поучительным здесь является то, что хотя нам и пришлось доказывать более сильное утверждение, чем это требуется в задаче, но мы могли пользоваться и более сильным предположением в индуктивном шаге. Этим и объясняется, что прямолинейное применение принципа математической индукции не всегда приводит к цели.

Ситуация, возникшая при решении задачи, получила название парадокса изобретателя. Сам парадокс состоит в том, что более сложные планы могут быть реализованы с большим успехом, если они базируются на более глубоком понимании существа дела.

Задача 11. Докажите, что 2 т + п - 2 тп при любых натуральных тип.

Решение. Здесь мы имеем два параметра. Поэтому можно попробовать провести так называемую двойную индукцию (индукция внутри индукции).

Будем проводить индуктивное рассуждение по п.

1. База индукции по п. При п = 1 нужно проверить, что 2 т ~ 1 > т. Для доказательства этого неравенства воспользуемся индукцией по т.

а) База индукции по т. При т = 1 выполняется
равенство, что допустимо.

б) Шаг индукции по т. Предположим, что при т = к утверждение верно, то есть 2 к ~ 1 > к. Тогда до
кажем, что утверждение будет верным и при
т = к + 1.
Имеем:

при натуральных к.

Таким образом, неравенство 2 выполняется при любом натуральном т.

2. Шаг индукции по п. Выберем и зафиксируем какое-нибудь натуральное число т. Предположим, что при п = I утверждение справедливо (при фиксированном т), то есть 2 т +1 ~ 2 > т1, и докажем, что тогда утверждение будет справедливым и при п = l + 1.
Имеем:

при любых натуральных т и п.

Следовательно, на основании принципа математической индукции (по п) утверждение задачи верно при любых п и при любом фиксированном т. Таким образом, данное неравенство выполняется при любых натуральных тип.

Задача 12. Пусть т, п и к — натуральные числа, причем т > п. Какое из двух чисел больше:

В каждом выражении к знаков квадратного корня, т и п чередуются.

Решение. Докажем сначала некоторое вспомогательное утверждение.

Лемма. При любых натуральных т и п (т > п) и неотрицательном (не обязательно целом) х справедливо неравенство

Доказательство. Рассмотрим неравенство

Это неравенство справедливо, так как оба сомножителя в левой части положительны. Раскрывая скобки и преобразовывая, получаем:

Извлекая квадратный корень из обеих частей последнего неравенства, получим утверждение леммы. Итак, лемма доказана.

Перейдем теперь к решению задачи. Обозначим первое из данных чисел через а, а второе — через Ь к . Докажем, что а при любом натуральном к. Доказательство будем проводить методом математической индукции отдельно для четных и нечетных к.

База индукции. При к = 1 имеем неравенство

у[т > у/п , справедливое в силу того, что т > п. При к = 2 требуемое получается из доказанной леммы подстановкой х = 0.

Шаг индукции. Предположим, при некотором к неравенство а >b к справедливо. Докажем, что

Из предположения индукции и монотонности квадратного корня имеем:

С другой стороны, из доказанной леммы следует,

Объединяя два последних неравенства, получаем:

Согласно принципу математической индукции, утверждение доказано.

Задача 13. (Неравенство Коши.) Докажите, что для любых положительных чисел..., а п справедливо неравенство

Решение. При п = 2 неравенство

о среднем арифметическом и среднем геометрическом (для двух чисел) будем считать известным. Пусть п= 2 , к = 1, 2, 3, ... и сначала проведем индукцию по к. База этой индукции имеет место Предположив теперь, что нужное неравенство уже установлено для п = 2 , докажем его для п = 2 . Имеем (применяя неравенство для двух чисел):

Следовательно, по индукционному предположению

Таким образом, индукцией по k мы доказали неравенство для всех п 9 являющихся степенью двойки.

Для доказательства неравенства для других значений п воспользуемся «индукцией вниз», то есть докажем, что если неравенство выполнено для произвольных неотрицательных п чисел, то оно справедливо также и для (п - 1)-го числа. Чтобы в этом убедиться, заметим, что по сделанному предположению для п чисел выполнено неравенство

то есть а г + а 2 + ... + а п _ х > (п — 1)А. Разделив обе части на п - 1, получим требуемое неравенство.

Итак, сначала мы установили, что неравенство имеет место для бесконечного числа возможных значений п, а затем показали, что если неравенство выполнено для п чисел, то оно справедливо и для (п - 1) числа. Отсюда теперь мы и заключаем, что неравенство Коти имеет место для набора из п любых неотрицательных чисел при любом п = 2, 3, 4, ...

Задача 14. (Д. Успенский.) Для любого треугольника АВС, у которого углы = САB, = СВА соизмеримы, имеют место неравенства

Решение. Углы и соизмеримы, а это (по определению) означает, что эти углы имеют общую меру, для которой = р, = (р, q— натуральные взаимно простые числа).

Воспользуемся методом математической индукции и проведем ее по сумме п = р + q натуральных взаимно простых чисел..

База индукции. При р + q = 2 имеем: р = 1 и q = 1. Тогда треугольник АВС равнобедренный, и нужные неравенства очевидны: они следуют из неравенства треугольника

Шаг индукции. Предположим теперь, что нужные неравенства установлены для р + q = 2, 3, ..., к — 1, где к > 2. Докажем, что неравенства справедливы и для р + q = к.

Пусть АВС — данный треугольник, у которого > 2. Тогда стороны АС и ВС не могут быть равными: пусть АС > ВС. Построим теперь, как на рисунке 2, равнобедренный треугольник АВС; имеем:

АС = DС и АD=АВ + ВD, следовательно,

2АС > АВ + ВD (1)

Рассмотрим теперь треугольник ВDС, углы которого также соизмеримы:

DСВ = (q - р), ВDС = p.

Рис. 2

Для этого треугольника выполнено индуктивное предположение, и поэтому

(2)

Складывая (1) и (2), имеем:

2AC+BD>

и поэтому

Из того же треугольника ВБС по предположению индукции заключаем, что

Учитывая предыдущее неравенство, заключаем, что

Таким образом, индуктивный переход получен, и утверждение задачи следует из принципа математической индукции.

Замечание. Утверждение задачи остается в силе и в том случае, когда углы а и р не являются соизмеримыми. В основе рассмотрения в общем случае уже приходится применять другой важный математический принцип — принцип непрерывности.

Задача 15. Несколько прямых делят плоскость на части. Доказать, что можно раскрасить эти части в белый

и черный цвета так, чтобы соседние части, имеющие общий отрезок границы, были разного цвета (как на рисунке 3 при п = 4).

рис 3

Решение. Воспользуемся индукцией по числу прямых. Итак, пусть п — число прямых, делящих нашу плоскость на части, п > 1.

База индукции. Если прямая одна (п = 1), то она делит плоскость на две полуплоскости, одну из которых можно раскрасить в белый цвет, а вторую в черный, и утверждение задачи верно.

Шаг индукции. Чтобы доказательство индуктивного перехода было более понятно, рассмотрим процесс добавления одной новой прямой. Если проведем вторую прямую (п = 2), то получим четыре части, которые можно раскрасить нужным образом, покрасив противоположные углы в один цвет. Посмотрим, что произойдет, если мы проведем третью прямую. Она поделит некоторые «старые» части, при этом появятся новые участки границы, по обе стороны которых цвет один и тот же (рис. 4).

Рис. 4

Поступим следующим образом: с одной стороны от новой прямой поменяем цвета — белый сделаем черным и наоборот; при этом те части, которые лежат по другую сторону от этой прямой, не перекрашиваем (рис. 5). Тогда эта новая раскраска будет удовлетворять нужным требованиям: с одной стороны прямой она уже была чередующейся (но с другими цветами), а с другой стороны она и была нужной. Для того чтобы части, имеющие общую границу, принадлежащую проведенной прямой, были окрашены в разные цвета, мы и перекрашивали части только с одной стороны от этой проведенной прямой.

Рис.5

Докажем теперь индуктивный переход. Предположим, что для некоторого п = к утверждение задачи справедливо, то есть все части плоскости, на которые она делится этими к прямыми, можно раскрасить в белый и черный цвета так, чтобы соседние части были разного цвета. Докажем, что тогда существует такая раскраска и для п = к + 1 прямых. Поступим аналогично случаю перехода от двух прямых к трем. Проведем на плоскости к прямых. Тогда, по предположению индукции, полученную «карту» можно раскрасить нужным образом. Проведем теперь + 1)-ю прямую и с одной стороны от нее поменяем цвета на противоположные. Таким образом, теперь + 1)-я прямая всюду разделяет участки разного цвета, при этом «старые» части, как мы уже видели, остаются правильно раскрашенными. Согласно принципу математической индукции, задача решена.

Задача 16. На краю пустыни имеются большой запас бензина и машина, которая при полной заправке может проехать 50 километров. В неограниченном количестве имеются канистры, в которые можно сливать бензин из бензобака машины и оставлять на хранение в любой точке пустыни. Доказать, что машина может проехать любое целочисленное расстояние, большее 50 километров. Канистры с бензином возить не разрешается, пустые можно возить в любом количестве.

Решение. Попытаемся доказать индукцией по п, что машина может отъехать на п километров от края пустыни. При п = 50 это известно. Осталось провести шаг индукции и объяснить, как проехать п = к + 1 километров, если известно, что п = к километров проехать можно.

Однако тут мы встречаемся с трудностью: после того как мы проехали к километров, бензина может не хватить даже на обратную дорогу (не говоря уже о хранении). И в данном случае выход состоит в усилении доказываемого утверждения (парадокс изобретателя). Будем доказывать, что можно не только проехать п километров, но и сделать сколь угодно большой запас бензина в точке на расстоянии п километров от края пустыни, оказавшись в этой точке после окончания перевозок.

База индукции. Пусть единица бензина — это количество бензина, необходимое для совершения одного километра пути. Тогда рейс на расстояние в 1 километр и обратно требует двух единиц бензина, поэтому мы можем оставить 48 единиц бензина в хранилище на расстоянии километра от края и вернуться за новой порцией. Таким образом, за несколько рейсов в хранилище можно сделать запас произвольного размера, который нам потребуется. При этом, чтобы создать 48 единиц запаса, мы расходуем 50 единиц бензина.

Шаг индукции. Предположим, что на расстоянии п = к от края пустыни можно запасти любое количество бензина. Докажем, что тогда можно создать хранилище на расстоянии п = к + 1 километров с любым заданным наперед запасом бензина и оказаться у этого хранилища в конце перевозок. Поскольку в точке п = к имеется неограниченный запас бензина, то (согласно базе индукции) мы можем за несколько рейсов в точку п = к + 1 сделать в точке п = к 4- 1 запас произвольного размера, который потребуется.

Истинность более общего утверждения, чем в условии задачи, теперь следует из принципа математической индукции.

Заключение

В частности, изучив метод математической индукции, я повысила свои знания в этой области математики, а также научилась решать задачи, которые раньше были мне не под силу.

В основном это были логические и занимательные задачи, т.е. как раз те, которые повышают интерес к самой математике как к науке. Решение таких задач становится занимательным занятием и может привлечь в математические лабиринты всё новых любознательных. По-моему, это является основой любой науки.

Продолжая изучать метод математической индукции, я постараюсь научиться применять его не только в математике, но и в решении проблем физики, химии и самой жизни.

Литература

1.Вuленкин ИНДУКЦИЯ. Комбинаторика. Пособие ДЛЯ учителей. М., Просвещение,

1976.-48 с.

2.Головина Л.И., Яглом И.М. Индукция в геометрии. - М.: Госуд. издат. литер. - 1956 - С.I00. Пособие по математике для поступающих в вузы/ Под ред. Яковлева Г.Н. Наука. -1981. - С.47-51.

3.Головина Л.И., Яглом ИМ. Индукция в геометрии. —
М.: Наука, 1961. — (Популярные лекции по математике.)

4. И.Т.Демидов,А.Н.Колмогоров, С.И.Шварцбург,О.С.Ивашев-Мусатов, Б.Е.Вейц. Учебное пособие / “Просвещение” 1975.

5.Р. Курант, Г Роббинс «Что такое математика?» Глава 1, § 2

6.Попа Д. Математика и правдоподобные рассуждения. — М,: Наука, 1975.

7.Попа Д. Математическое открытие. — М.: Наука,1976.

8.Рубанов И.С. Как обучать методу математической индукции/ Математика школе. - Nl. - 1996. - С.14-20.

9.Соминский И.С., Головина Л.И., Яглом ИМ. О методе математической индукции. — М.: Наука, 1977. — (Популярные лекции по математике.)

10.Соломинский И.С. Метод математической индукции. - М.: Наука.

63с.

11.Соломинский И.С., Головина Л.И., Яглом И.М. О математической индукции. - М.:Наука. - 1967. - С.7-59.

12.httр://ш.wikiреdiа.оrg/wiki

13.htt12:/ /www.rеfешtсоllесtiоп.ru/40 124.html

МБОУ лицей «Технико-экономический»

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Методическая разработка «Метод математической индукции» составлена для обучающихся 10 класса математического профиля.

Первоочередные цели: познакомить обучающихся с методом математической индукции и научить применять его при решении различных задач.

В методической разработке рассматриваются вопросы элементарной математики: задачи на делимость, доказательство тождеств, доказательство неравенств, предлагаются задачи различной степени сложности, в том числе и задачи, предлагаемые на олимпиадах.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. Название метод математической индукции обманчиво – на самом деле этот метод является дедуктивным и дает строгое доказательство утверждениям, угаданным с помощью индукции. Метод математической индукции содействует выявлению связей между различными разделами математики, помогает развитию математической культуры обучающегося.

Определение метода математической индукции. Полная и неполная индукции. Доказательство неравенств. Доказательство тождеств. Решение задач на делимость. Решение различных задач по теме «Метод математической индукции».

ЛИТЕРАТУРА ДЛЯ УЧИТЕЛЯ

1. М.Л.Галицкий. Углубленное изучение курса алгебры и математического анализа. – М.Просвещение.1986.

2. Л.И.Звавич. Алгебра и начала анализа. Дидактические материалы. М.Дрофа.2001.

3. Н.Я.Виленкин. Алгебра и математический анализ. М Просвещение.1995.

4. Ю.В.Михеев. Метод математической индукции. НГУ.1995.

ЛИТЕРАТУРА ДЛЯ ОБУЧАЮЩИХСЯ

1. Н.Я.Виленкин. Алгебра и математический анализ. М Просвещение.1995.

2. Ю.В.Михеев. Метод математической индукции. НГУ.1995.

КЛЮЧЕВЫЕ СЛОВА

Индукция, аксиома, принцип математической индукции, полная индукция, неполная индукция, утверждение, тождество, неравенство, делимость.

ДИДАКТИЧЕСКОЕ ПРИЛОЖЕНИЕ К ТЕМЕ

«МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ».

Урок № 1.

Определение метода математической индукции.

Метод математической индукции является одним из высокоэффективных методом поиска новых результатов и доказательства истинности выдвинутых предположений. Хотя этот метод в математике и не нов, но интерес к нему не ослабевает. Впервые в четком изложении метод математической индукции был применен в 17 веке выдающимся французским ученым Блезом Паскалем при доказательстве свойств числового треугольника, носящего с того времени его имя. Однако идея математической индукции была известна еще древним грекам. В основе метода математической индукции лежит принцип математической индукции, который принимается как аксиома. Идею математической индукции рассмотрим на примерах.

Пример № 1.

Квадрат делится отрезком на две части, затем одна из полученных частей делится на две части и так далее. Определить, на какое число частей разделится квадрат через п шагов?

Решение.

После первого шага мы, по условию, получим 2 части. На втором шаге мы одну часть оставляем без изменений, а вторую – делим на 2 части и получаем 3 части. На третьем шаге мы 2 части оставляем без изменений, а третью делим на две части и получаем 4 части. На четвертом шаге мы 3 части оставляем без изменений, а последнюю часть делим на две части и получаем 5 частей. На пятом шаге мы получим 6 частей. Напрашивается предложение, что через п шагов мы получим (п+1) часть. Но это предложение нужно доказать. Предположим, что через к шагов квадрат разобьется на (к+1) часть. Тогда на (к+1) шаге мы к частей оставим без изменения, а (к+1) часть делим на две части и получим (к+2) части. Замечаете, что так можно рассуждать как угодно долго, до бесконечности. То есть, наше предположение, что через п шагов квадрат будет разбит на (п+1) часть, становится доказанным.

Пример № 2.

У бабушки был внучек, который очень любил варенье, и особенно то, что в литровой банке. Но бабушка не разрешала его трогать. И задумал внучек обмануть бабушку. Он решил съедать каждый день по 1/10 л из этой банки и доливать её водой, тщательно перемешав. Через сколько дней бабушка обнаружит обман, если варенье остается прежним на вид при разбавлении его водой на половину?

Решение.

Найдем, сколько чистого варенья останется в банке через п дней. После первого дня в банке останется смесь, состоящая на 9/10 из варенья и на 1/10 из воды. Через два дня из банки исчезнет 1/10 смеси воды и варенья и останется (в 1л смеси находится 9/10л варенья, в 1/10л смеси находится 9/100лваренья)

9/10 – 9/100=81/100=(9/10) 2 л варенья. На третий день из банки исчезнет 1/10л смеси, состоящей на 81/100 из варенья и на19/100 из воды. В 1л смеси находится 81/100л варенья, в 1/10л смеси 81/1000л варенья. 81/100 – 81/1000=

729/1000=(9/10) 3 л варенья останется через 3 дня, а остальное будет занимать вода. Выявляется закономерность. Через п дней в банке останется (9/10) п л варенья. Но это, опять, только наше предположение.

Пусть к – произвольное натуральное число. Предположим, что через к дней в банке останется (9/10) к л варенья. Посмотрим, что же тогда будет в банке еще через день, то есть, через (к+1) день. Из банки исчезнет 1/10л смеси, состоящей из (9/10) к л варенья и воды. В смеси находится (9/10) к л варенья, в 1/10л смеси (9/10) к+1 л варенья. Теперь мы смело можем заявлять, что через п дней в банке останется (9/10) п л варенья. Через 6 дней в банке будет 531444/1000000л варенья, через 7 дней – 4782969/10000000л варенья, то есть меньше половины.

Ответ: через 7 дней бабушка обнаружит обман.

Попытаемся выделить самое основное в решениях рассмотренных задач. Каждую из них мы начинали решать с рассмотрения отдельных или, как говорят, частных случаев. Затем на основе наших наблюдений, мы высказывали некоторое предположение Р(п) , зависящее от натурального п.

    утверждение проверили, то есть доказали Р(1), Р(2), Р(3);

    предположили, что Р(п) справедливо при п=к и вывели, что тогда оно будет справедливо и при следующем п, п=к+1.

А затем рассуждали примерно так: Р(1) верно, Р(2) верно, Р(3) верно, Р(4) верно,…, значит верно Р(п).

Принцип математической индукции.

Утверждение Р(п) , зависящее от натурального п , справедливо при всех натуральных п , если

1) доказана справедливость утверждения при п=1;

2) из предположения справедливости утверждения Р(п) при п=к следует

справедливость Р(п) при п=к+1.

В математике принцип математической индукции выбирается, как правило, в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства. Метод доказательства по принципу математической индукции обычно называется методом математической индукции. Заметим, что этот метод широко применяется при доказательстве теорем, тождеств, неравенств при решении задач на делимость и многих других задач.

Урок № 2

Полная и неполная индукция.

В случае, когда математическое утверждение касается конечного числа объектов, его можно доказать, проверяя для каждого объекта, например, утверждение «Каждое двузначное четное число является суммой двух простых чисел». Метод доказательства, при котором мы проверяем утверждение для конечного числа случаев, называется полной математической индукцией. Этот метод применим сравнительно редко, так как утверждения чаще всего рассматриваются на бесконечных множествах. Например, теорема «Любое четное число равно сумме двух простых чисел» до сих пор ни доказана, ни опровергнута. Если бы мы даже проверили эту теорему для первого миллиарда, это бы ни на шаг не приблизило бы нас к её доказательству.

В естественных науках применяют неполную индукцию, проверяя эксперимент несколько раз, переносят результат на все случаи.

Пример № 3.

Угадаем с помощью неполной индукции формулу для суммы кубов натуральных чисел.

Решение.

1 3 =1; 1 3 +2 3 =(1+2) 2 ; 1 3 +2 3 +3 3 =(1+2+3) 2 ; 1 3 +2 3 +3 3 +4 3 =(1+2+3+4) 2 ;

1 3 +2 3 +3 3 +4 3 +5 3 =(1+2+3+4+5) 2 ; …; 1 3 +2 3 +…+n 3 =(1+2+…+n) 2 .

Доказательство.

Пусть верно для п=к.

Докажем, что верно для п=к+1.

Вывод: формула для суммы кубов натуральных чисел верна для любого натурального п.

Пример № 4.

Рассмотрите равенства и догадайтесь, к какому общему закону подводят эти примеры.

Решение.

1=0+1

2+3+4=1+8

5+6+7+8+9=8+27

10+11+12+13+14+15+16=27+64

17+18+19+20+21+22+23+24+25=64+125

……………………………………………………………..

Пример № 5.

Запишите в виде суммы следующие выражения:

1)
2)
3)
; 4)
.

греческая буква «сигма».

Пример № 6.

Запишите следующие суммы с помощью знака
:

2)

Пример № 7.

Запишите следующие выражения в виде произведений:

1)

3)
4)

Пример № 8.

Запишите следующие произведения с помощью знака

(прописная греческая буква «пи»)

1)
2)

Пример № 9.

Вычисляя значение многочлена f ( n )= n 2 + n +11 , при п=1,2,3,4.5,6,7 можно сделать предположение, что при любом натуральном п число f ( n ) простое.

Верно ли это предположение?

Решение.

Если каждое слагаемое суммы делится на число, то сумма делится на это число,
не является простым числом при любом натуральном п.

Разбор конечного числа случаев играет важную роль в математике: не давая доказательства того или иного утверждения, он помогает угадать правильную формулировку этого утверждения, если она ещё неизвестна. Именно так член Петербургской академии наук Гольдбах пришел к гипотезе, что любое натуральное число, начиная с двух, является суммой не более чем трёх простых чисел.

Урок № 3.

Метод математической индукции позволяет доказывать различные тождества.

Пример № 10. Докажем, что для всех п выполняется тождество

Решение.

Положим


Нам надо доказать, что



Докажем, что Тогда из истинности тождества

следует истинность тождества

По принципу математической индукции доказана истинность тождества при всех п .

Пример № 11.

Докажем тождество

Доказательство.


почленно получившиеся равенства.

;
. Значит, данное тождество истинно для всех
п .

Урок № 4.

Доказательство тождеств методом математической индукции.

Пример № 12. Докажем тождество

Доказательство.


Применяя принцип математической индукции, доказали, что равенство верно при всех п .

Пример № 13. Докажем тождество

Доказательство.


Применяя принцип математической индукции, доказали, что утверждение верно при любом натуральном п .

Пример № 14. Докажем тождество

Доказательство.


Пример № 15. Докажем тождество

1) п=1;

2) для п=к выполняется равенство

3) докажем, что равенство выполняется для п=к+1:

Вывод: тождество справедливо для любого натурального п.

Пример № 16. Докажем тождество

Доказательство.

Если п=1 , то

Пусть тождество выполняется при п=к.

Докажем, что тождество выполняется при п=к+1.



Тогда тождество справедливо для любого натурального п .

Урок № 5.

Доказательство тождеств методом математической индукции.

Пример № 17. Докажем тождество

Доказательство.

Если п=2 , то получаем верное равенство:

Пусть равенство верно при п=к:

Докажем справедливость утверждения при п=к+1.

Согласно принципу математической индукции, тождество доказано.

Пример № 18. Докажем тождество
при п≥2.

При п=2 это тождество перепишется в очень простом виде

и, очевидно, верно.

Пусть при п=к действительно

.

Докажем справедливость утверждения при п=к+1, то есть выполняется равенство: .

Итак, мы доказали, что тождество верно при любом натуральном п≥2.

Пример № 19. Докажем тождество

При п=1 получим верное равенство:

Предположим, что при п=к получаем также верное равенство:

Докажем, что наблюдается справедливость равенства при п=к+1:

Тогда тождество справедливо при любом натуральном п .

Урок № 6.

Решение задач на делимость.

Пример № 20. Доказать методом математической индукции, что

делится на 6 без остатка.

Доказательство.

При п=1 наблюдается деление на 6 без остатка,
.

Пусть при п=к выражение
кратно
6.

Докажем, что при п=к+1 выражение
кратно
6 .

Каждое слагаемое кратно 6 , следовательно сумма кратна 6 .

Пример № 21.
на
5 без остатка.

Доказательство.

При п=1 выражение делится без остатка
.

Пусть при п=к выражение
также делится на
5 без остатка.

При п=к+1 делится на 5 .

Пример № 22. Доказать делимость выражения
на
16.

Доказательство.

При п=1 кратно 16 .

Пусть при п=к
кратно
16.

При п=к+1

Все слагаемые делятся на 16: первое – очевидно, второе по предположению, а в третьем – в скобках стоит четное число.

Пример № 23. Доказать делимость
на
676.

Доказательство.

Предварительно докажем, что
делится на
.

При п=0
.

Пусть при п=к
делится на
26 .

Тогда при п=к+1 делится на 26 .

Теперь проведем доказательство утверждения, сформулированного в условии задачи.

При п=1 делится на 676.

При п=к верно, что
делится на
26 2 .

При п=к+1 .

Оба слагаемых делятся на 676 ; первое – потому, что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции.

Урок № 7.

Решение задач на делимость.

Пример № 24.

Доказать, что
делится на 5 без остатка.

Доказательство.

При п=1
делится на
5.

При п=к
делится на
5 без остатка.

При п=к+1 каждое слагаемое делится на 5 без остатка.

Пример № 25.

Доказать, что
делится на 6 без остатка.

Доказательство.

При п=1
делится на
6 без остатка.

Пусть при п=к
делится на
6 без остатка.

При п=к+1 делится на 6 без остатка, так как каждое слагаемое делится на 6 без остатка: первое слагаемое – по предположению индукции, второе – очевидно, третье – потому, что
четное число.

Пример № 26.

Доказать, что
при делении на 9 дает остаток 1 .

Доказательство.

Докажем, что
делится на 9 .

При п=1
делится на 9 . Пусть при п=к
делится на
9 .

При п=к+1 делится на 9 .

Пример № 27.

Доказать, что делится на 15 без остатка.

Доказательство.

При п=1 делится на 15 .

Пусть при п=к делится на 15 без остатка.

При п=к+1

Первое слагаемое кратно 15 по предположению индукции, второе слагаемое кратно 15 – очевидно, третье слагаемое кратно 15 , так как
кратно
5 (доказано в примере № 21), четвертое и пятое слагаемые также кратны 5 , что очевидно, тогда сумма кратна 15 .

Урок № 8-9.

Доказательство неравенств методом математической индукции

Пример № 28.
.

При п=1 имеем
- верно.

Пусть при п=к
- верное неравенство.

При п=к+1

Тогда неравенство справедливо для любого натурального п .

Пример № 29. Доказать, что справедливо неравенство
при любом п .

При п=1 получим верное неравенство 4 >1.

Пусть при п=к справедливо неравенство
.

Докажем, что при п=к+1 справедливо неравенство

Для любого натурального к наблюдается неравенство .

Если
при
то



Пример № 30.

при любом натуральном п и любом

Пусть п=1
, верно.

Предположим, что неравенство выполняется при п=к :
.

При п=к+1

Пример № 31. Доказать справедливость неравенства

при любом натуральном п .

Докажем сначала, что при любом натуральном т справедливо неравенство

Умножим обе части неравенства на
. Получим равносильное неравенство или
;
; - это неравенство выполняется при любом натуральном т .

При п=1 исходное неравенство верно
;
;
.

Пусть неравенство выполняется при п=к:
.

При п=к+1

Урок № 10.

Решение задач по теме

Метод математической индукции.

Пример № 32. Доказать неравенство Бернулли.

Если
, то для всех натуральных значений п выполняется неравенство

Доказательство.

При п=1 доказываемое неравенство принимает вид
и, очевидно, справедливо. Предположим, что оно верно при
п=к , то есть что
.

Так как по условию
, то
, и потому неравенство не изменит смысла при умножении обеих его частей на
:

Так как
, то получаем, что

.

Итак, неравенство верно при п=1 , а из его истинности при п=к следует, что оно истинно и при п=к+1. Значит, в силу математической индукции оно имеет место для всех натуральных п.

Например,

Пример № 33. Найти все натуральные значения п , для которых справедливо неравенство

Решение.

При п=1 неравенство справедливо. При п=2 неравенство также справедливо.

При п=3 неравенство уже не выполняется. Лишь при п=6 неравенство выполняется, так что за базис индукции можно взять п=6.

Предположим, что неравенство справедливо для некоторого натурального к:

Рассмотрим неравенство

Последнее неравенство выполняется, если
Контрольная работа по теме п=1 задана рекуррентно: п≥5 , где п - -натуральное число.


Метод доказательства, основанный на аксиоме Пеано 4, используют для доказательства многих математических свойств и различных утверждений. Основой для этого служит следующая теорема.


Теорема . Если утверждение А(n) с натуральной переменной n истинно для n = 1 и из того, что оно истинно для n = k , следует, что оно истинно и для следующего числа n=k, то утверждение А(n) n .


Доказательство . Обозначим через М множество тех и только тех натуральных чисел, для которых утверждение А(n) истинно. Тогда из условия теоремы имеем: 1) 1М ; 2) k M k M . Отсюда, на основании аксиомы 4, заключаем, что М = N , т.е. утверждение А(n) истинно для любого натурального n .


Метод доказательства, основанный на этой теореме, называется методом математической индукции, а аксиома - аксиомой индукции. Такое доказательство состоит из двух частей:


1) доказывают, что утверждение А(n) истинно для n = А(1);


2) предполагают, что утверждение А(n) истинно для n = k , и, исходя из этого предположения, доказывают, что утверждение A(n) истинно и для n = k + 1, т.е. что истинно высказывание A(k) A(k + 1).


Если А(1) А(k) A(k + 1) - истинное высказывание, то делают вывод о том, что утверждение A(n) истинно для любого натурального числа n .


Доказательство методом математической индукции можно начинать не только с подтверждения истинности утверждения для n = 1, но и с любого натурального числа m . В этом случае утверждение А(n) будет доказано для всех натуральных чисел nm .


Задача.Докажем, что для любого натурального числа истинно равенство 1 + 3 + 5 … + (2n - 1) = n.


Решение. Равенство 1 + 3 + 5 … + (2n - 1) = n представляет собой формулу, по которой можно находить сумму первых последовательных нечетных натуральных чисел. Например, 1 + 3 + 5 + 7 = 4= 16 (сумма содержит 4 слагаемых), 1 + 3 + 5 + 7 + 9 + 11 = 6= 36 (сумма содержит 6 слагаемых); если эта сумма содержит 20 слагаемых указанного вида, то она равна 20= 400 и т.д. Доказав истинность данного равенства, получим возможность находить по формуле сумму любого числа слагаемых указанного вида.


1) Убедимся в истинности данного равенства для n = 1. При n = 1 левая часть равенства состоит из одного члена, равного 1, правая часть равна 1= 1. Так как 1 = 1, то для n = 1 данное равенство истинно.


2) Предположим, что данное равенство истинно для n = k , т.е. что 1 + 3 + 5 + … + (2k - 1) = k. Исходя из этого предположения, докажем, что оно истинно и для n = k + 1, т.е. 1 + 3 + 5 + … + (2k - 1) + (2(k + 1) - 1) = (k + 1).


Рассмотрим левую часть последнего равенства.


По предположению, сумма первых k слагаемых равна k и потому 1 + 3 + 5 + … + (2k - 1) + (2(k + 1) - 1) = 1 + 3 + 5 + … + (2k - 1) + (2k + 1)=



= k+ (2k + 1) = k+ 2k + 1. Выражение k+ 2k + 1 тождественно равно выражению (k + 1).


Следовательно, истинность данного равенства для n = k + 1 доказана.


Таким образом, данное равенство истинно для n = 1 и из истинности его для n = k следует истинность для n = k + 1.


Тем самым доказано, что данное равенство истинно для любого натурального числа.


С помощью метода математической индукции можно доказывать истинность не только равенств, но и неравенств.


Задача. Доказать, что , где nN.


Решение. Проверим истинность неравенства при n = 1. Имеем - истинное неравенство.


Предположим, что неравенство верно при n = k, т.е. - истинное неравенство. Докажем, исходя из предположения, что оно верно и при n = k + 1,т.е. (*).


Преобразуем левую часть неравенства (*), учитывая, что : .


Но , значит и .


Итак, данное неравенство истинно для n = 1, и, из того, что неравенство верно для некоторого n = k , мы получили, что оно верно и для n = k + 1.


Тем самым, используя аксиому 4, мы доказали, что данное неравенство истинно для любого натурального числа.


Методом математической индукции можно доказать и иные утверждения.


Задача. Доказать, что для любого натурального числа истинно утверждение .


Решение . Проверим истинность утверждения при n = 1: -истинное высказывание.


Предположим, что данное утверждение верно при n = k : . Покажем, используя это, истинность утверждения при n = k + 1: .


Преобразуем выражение: . Найдем разность k и k+ 1 членов. Если окажется, что полученная разность кратна 7, а по предположению вычитаемое делится на 7, то и уменьшаемое также кратно 7:



Произведение кратно 7, следовательно, и .


Таким образом, данное утверждение истинно для n = 1 и из истинности его для n = k следует истинность для n = k + 1.


Тем самым доказано, что данное утверждение истинно для любого натурального числа.


Задача. Доказать, что для любого натурального числа n 2 истинно утверждение (7- 1)24.


Решение. 1) Проверим истинность утверждения при n = 2: - истинное высказывание.

Метод доказательства, о котором будет идти речь в данном пункте, основан на одной из аксиом натурального ряда.

Аксиома индукции. Пусть дано предложение, зависящее от переменной п, вместо которой можно подставлять любые натуральные числа. Обозначим его А(п). Пусть также предложение А верно для числа 1 и из того, что А верно для числа к , следует, что А верно для числа к+ 1. Тогда предложение А верно для всех натуральных значений п.

Символическая запись аксиомы:

Здесь пик- переменные по множеству натуральных чисел. Из аксиомы индукции получается следующее правило вывода:

Итак, для того чтобы доказать истинность предложения А, можно вначале доказать два утверждения: истинность высказывания А( 1), а также следствие А(к) => А(к+ 1).

Учитывая сказанное выше, опишем сущность метода

математической индукции.

Пусть требуется доказать, что предложение А(п) верно для всех натуральных п. Доказательство разбивается на два этапа.

  • 1- й этап. База индукции. Берем в качестве значения п число 1 и проверяем, что А( 1) есть истинное высказывание.
  • 2- й этап. Индуктивный переход. Доказываем, что при любом натуральном числе к верна импликация: если А{к ), то А(к+ 1).

Индуктивный переход начинается словами: «Возьмем произвольное натуральное число к, такое, что А(к)», или «Пусть для натурального числа к верно А(к)». Вместо слова «пусть» часто говорят «предположим, что...».

После этих слов буква к обозначает некий фиксированный объект, для которого выполняется соотношение А{к). Далее из А(к) выводим следствия, то есть строим цепочку предложений А(к) 9 Р , Pi, ..., Р„ = А(к+ 1), где каждое предложение Р, является истинным высказыванием или следствием предыдущих предложений. Последнее предложение Р„ должно совпадать с А(к+ 1). Отсюда заключаем: из А{к) следует А(к+ ).

Выполнение индуктивного перехода можно расчленить на два действия:

  • 1) Индуктивное предположение. Здесь мы предполагаем, что А к переменной н.
  • 2) На основе предположения доказываем, что А верно для числа?+1.

Пример 5.5.1. Докажем, что число п+п является четным при всех натуральных п.

Здесь А(п) = «п 2 +п - четное число». Требуется доказать, что А - тождественно истинный предикат. Применим метод математической индукции.

База индукции. Возьмем л=1. Подставим в выражение п +//, получим n 2 +n = I 2 + 1 = 2 - четное число, то есть /1(1) - истинное высказывание.

Сформулируем индуктивное предположение А{к) = «Число к 2 +к - четное». Можно сказать так: «Возьмем произвольное натуральное число к такое, что к 2 +к есть четное число».

Выведем отсюда утверждение А(кА-) = «Число (к+ 1) 2 +(?+1) - четное».

По свойствам операций выполним преобразования:

Первое слагаемое полученной суммы четно по предположению, второе четно по определению (так как имеет вид 2п). Значит, сумма есть четное число. Предложение А(к+ 1) доказано.

По методу математической индукции делаем вывод: предложение А(п) верно для всех натуральных п.

Конечно, нет необходимости каждый раз вводить обозначение А(п). Однако все же рекомендуется отдельной строкой формулировать индуктивное предположение и то, что требуется из него вывести.

Заметим, что утверждение из примера 5.5.1 можно доказать без использования метода математической индукции. Для этого достаточно рассмотреть два случая: когда п четно и когда п нечетно.

Многие задачи на делимость решаются методом математической индукции. Рассмотрим более сложный пример.

Пример 5.5.2. Докажем, что число 15 2и_| +1 делится на 8 при всех натуральных п.

Бача индукции. Возьмем /1=1. Имеем: число 15 2|_| +1 = 15+1 = 16 делится на число 8.

, что для некоторого

натурального числа к число 15 2 * ’+1 делится на 8.

Докажем , что тогда число а = 15 2(ЖН +1 делится 8.

Преобразуем число а:

По предположению, число 15 2А1 +1 делится на 8, значит, все первое слагаемое делится на 8. Второе слагаемое 224=8-28 также делится на 8. Таким образом, число а как разность двух чисел, кратных 8, делится на 8. Индуктивный переход обоснован.

На основе метода математической индукции заключаем, что для всех натуральных п число 15 2 " -1 -*-1 делится на 8.

Сделаем некоторые замечания по решенной задаче.

Доказанное утверждение можно сформулировать немного по-другому: «Число 15”"+1 делится на 8 при любых нечетных натуральных /и».

Во-вторых, из доказанного общего утверждения можно сделать частный вывод, доказательство которого может быть дано как отдельная задача: число 15 2015 +1 делится на 8. Поэтому иногда бывает полезно обобщить задачу, обозначив какое-то конкретное значение буквой, а затем применить метод математической индукции.

В самом общем понимании термин «индукция» означает, что на основе частных примеров делают общие выводы. Например, рассмотрев некоторые примеры сумм четных чисел 2+4=6, 2+8=10, 4+6=10, 8+12=20, 16+22=38, делаем вывод о том, что сумма любых двух четных чисел есть четное число.

В общем случае вот такая индукция может привести к неверным выводам. Приведем пример подобного неправильного рассуждения.

Пример 5.5.3. Рассмотрим число а = /г+я+41 при натуральном /?.

Найдем значения а при некоторых значениях п.

Пусть п= I. Тогда а = 43 - простое число.

Пусть /7=2. Тогда а = 4+2+41 = 47 - простое.

Пусть л=3. Тогда а = 9+3+41 = 53 - простое.

Пусть /7=4. Тогда а = 16+4+41 = 61 - простое.

Возьмите в качестве значений п следующие за четверкой числа, например 5, 6, 7, и убедитесь, что число а будет простым.

Делаем вывод: «При всех натуральных /? число а будет простым».

В результате получилось ложное высказывание. Приведем контрпример: /7=41. Убедитесь, что при данном п число а будет составным.

Термин «математическая индукция» несет в себе более узкий смысл, так как применение этого метода позволяет получить всегда верное заключение.

Пример 5.5.4. Получим на основе индуктивных рассуждений формулу общего члена арифметической прогрессии. Напомним, что арифметической профессией называется числовая последовательность, каждый член которой отличается от предыдущего на одно и то же число, называемое разностью прогрессии. Для того чтобы однозначно задать арифметическую профессию, нужно указать ее первый член а и разность d.

Итак, по определению а п+ = а п + d, при п> 1.

В школьном курсе математики, как правило, формула общего члена арифметической профессии устанавливается на основе частных примеров, то есть именно по индукции.

Если /7=1, ТО С 7| = Я|, ТО есть Я| = tf|+df(l -1).

Если /7=2, то я 2 = a+d, то есть а = Я|+*/(2-1).

Если /7=3, то я 3 = я 2 + = (a+d)+d = a+2d, то есть я 3 = Я|+(3-1).

Если /7=4, то я 4 = я 3 +*/ = (a+2d)+d = Я1+3 и т.д.

Приведенные частные примеры позволяют выдвинуть гипотезу: формула общего члена имеет вид а„ = a+(n-)d для всех /7>1.

Докажем эту формулу методом математической индукции.

База индукции проверена в предыдущих рассуждениях.

Пусть к - такой номер, при котором я* - a+{k-)d (индуктивное предположение ).

Докажем , что я*+! = a+((k+)-)d, то есть я*+1 = a x +kd.

По определению я*+1 = аь+d. а к = я | +(к -1 )d , значит, ац+ = я i +(А:-1)^/+с/ = я | +(А-1+1 )d = я i +kd , что и требовалось доказать (для обоснования индуктивного перехода).

Теперь формула я„ = a+{n-)d доказана для любого натурального номера /;.

Пусть дана некоторая последовательность я ь я 2 , я,„ ... (не

обязательно арифметическая или геометрическая прогрессия). Часто возникают задачи, где требуется суммировать первые п членов этой последовательности, то есть задать сумму Я|+я 2 +...+я и формулой, которая позволяет находить значения этой суммы, не вычисляя члены последовательности.

Пример 5.5.5. Докажем, что сумма первых п натуральных чисел равна

/?(/7 + 1)

Обозначим сумму 1+2+...+/7 через S n . Найдем значения S n для некоторых /7.

Заметим: для того чтобы найти сумму S 4 , можно воспользоваться вычисленным ранее значением 5 3 , так как 5 4 = 5 3 +4.

п(п +1)

Если подставить рассмотренные значения /? в терм ---то

получим, соответственно, те же суммы 1, 3, 6, 10. Эти наблюдения

. _ п(п + 1)

наталкивают на мысль, что формулу S „=--- можно использовать при

любом //. Докажем эту гипотезу методом математической индукции.

База индукции проверена. Выполним индуктивный переход.

Предположим , что формула верна для некоторого натурального числа

, к(к + 1)

к, то сеть сумма первых к натуральных чисел равна ----.

Докажем , что сумма первых (?+1) натуральных чисел равна

  • (* + !)(* + 2)

Выразим?*+1 через S k . Для этого в сумме S*+i сгруппируем первые к слагаемых, а последнее слагаемое запишем отдельно:

По индуктивному предположению S k = Значит, чтобы найти

сумму первых (?+1) натуральных чисел, достаточно к уже вычисленной

. „ к(к + 1) _ .. ..

сумме первых к чисел, равной ---, прибавить одно слагаемое (к+1).

Индуктивный переход обоснован. Тем самым выдвинутая вначале гипотеза доказана.

Мы привели доказательство формулы S n = п ^ п+ методом

математической индукции. Конечно, есть и другие доказательства. Например, можно записать сумму S, в порядке возрастания слагаемых, а затем в порядке убывания слагаемых:

Сумма слагаемых, стоящих в одном столбце, постоянна (в одной сумме каждое следующее слагаемое уменьшается на 1, а в другой увеличивается на 1) и равна (/г+1). Поэтому, сложив полученные суммы, будем иметь п слагаемых, равных (и+1). Итак, удвоенная сумма S„ равна п(п+ 1).

Доказанная формула может быть получена как частный случай формулы суммы первых п членов арифметической прогрессии.

Вернемся к методу математической индукции. Отметим, что первый этап метода математической индукции (база индукции) всегда необходим. Отсутствие этого этапа может привести к неверному выводу.

Пример 5.5.6. «Докажем» предложение: «Число 7"+1 делится на 3 при любом натуральном я».

«Предположим, что при некотором натуральном значении к число 7*+1 делится на 3. Докажем, что число 7 ж +1 делится на 3. Выполним преобразования:

Число 6 очевидно делится на 3. Число 1 к + делится на 3 по индуктивному предположению, значит, число 7-(7* + 1) также делится на 3. Поэтому разность чисел, делящихся на 3, будет также делиться на 3.

Предложение доказано».

Доказательство исходного предложения неверно, несмотря на то что индуктивный переход выполнен правильно. Действительно, при п= I имеем число 8, при п=2 - число 50, ..., и ни одно из этих чисел нс делится на 3.

Сделаем важное замечание об обозначении натурального числа при выполнении индуктивного перехода. При формулировке предложения А(п) буквой п мы обозначали переменную, вместо которой можно подставлять любые натуральные числа. При формулировке индуктивного предположения мы обозначали значение переменной буквой к. Однако очень часто вместо новой буквы к используют ту же самую букву, которой обозначается переменная. Это никак не влияет на структуру рассуждений при выполнении индуктивного перехода.

Рассмотрим еще несколько примеров задач, для решения которых можно применить метод математической индукции.

Пример 5.5.7. Найдем значение суммы

В задании переменная п не фигурирует. Однако рассмотрим последовательность слагаемых:

Обозначим S, = а+а 2 +...+а„. Найдем S „ при некоторых п. Если /1= 1, то S, =а, = -.

Если п= 2. то S, = а, + а? = - + - = - = -.

Если /?=3, то S-, = a,+a 7 + я, = - + - + - = - + - = - = -.

3 1 - 3 2 6 12 3 12 12 4

Можете самостоятельно вычислить значения S„ при /7 = 4; 5. Возникает

естественное предположение: S n = -- при любом натуральном /7. Докажем

это методом математической индукции.

База индукции проверена выше.

Выполним индуктивный переход , обозначая произвольно взятое

значение переменной п этой же буквой, то есть докажем, что из равенства

0 /7 _ /7 +1

S n =-следует равенство S , =-.

/7+1 /7 + 2

Предположим, что верно равенство S = - П -.

Выделим в сумме S„+ первые п слагаемых:

Применив индуктивное предположение, получим:

Сокращая дробь на (/7+1), будем иметь равенство S n +1 - , Л

Индуктивный переход обоснован.

Тем самым доказано, что сумма первых п слагаемых

  • 1 1 1 /7 ^
  • - +-+...+- равна -. Теперь возвратимся к первоначальной
  • 1-2 2-3 /?(// +1) /7 + 1

задаче. Для ее решения достаточно взять в качестве значения п число 99.

Тогда сумма -!- + -!- + -!- + ...+ --- будет равна числу 0,99.

1-2 2-3 3-4 99100

Постарайтесь вычислить данную сумму другим способом.

Пример 5.5.8. Докажем, что производная суммы любого конечного числа дифференцируемых функций равна сумме производных этих функций.

Пусть переменная /? обозначает количество данных функций. В случае, когда дана только одна функция, под суммой понимается именно эта функция. Поэтому если /7=1, то утверждение очевидно истинно:/" = /".

Предположим , что утверждение справедливо для набора из п функций (здесь снова вместо буквы к взята буква п), то есть производная суммы п функций равна сумме производных.

Докажем , что производная суммы (я+1) функций равна сумме производных. Возьмем произвольный набор, состоящий из п+ дифференцируемой функции: /1,/2, . Представим сумму этих функций

в виде g+f„+ 1, где g=f +/г + ... +/ t - сумма п функций. По индуктивному предположению производная функции g равна сумме производных: g" = ft +ft + ... +ft. Поэтому имеет место следующая цепочка равенств:

Индуктивный переход выполнен.

Таким образом, исходное предложение доказано для любого конечного числа функций.

В ряде случаев требуется доказать истинность предложения А(п) для всех натуральных я, начиная с некоторого значения с. Доказательство методом математической индукции в таких случаях проводится по следующей схеме.

База индукции. Доказываем, что предложение А верно для значения п, равного с.

Индуктивный переход. 1) Предполагаем, что предложение А верно для некоторого значения к переменной /?, которое больше либо равно с.

2) Доказываем, что предложение А истинно для значения /?, равного

Снова заметим, что вместо буквы к часто оставляют обозначение переменной п. В этом случае индуктивный переход начинают словами: «Предположим, что для некоторого значения п>с верно А(п). Докажем, что тогда верно А(п+ 1)».

Пример 5.5.9. Докажем, что при всех натуральных п> 5 верно неравенство 2” > и 2 .

База индукции. Пусть п= 5. Тогда 2 5 =32, 5 2 =25. Неравенство 32>25 истинно.

Индуктивный переход. Предположим , что имеет место неравенство 2 П >п 2 для некоторого натурального числа п> 5. Докажем , что тогда 2" +| > (п+1) 2 .

По свойствам степеней 2” +| = 2-2". Так как 2">я 2 (по индуктивному предположению), то 2-2" > 2я 2 (I).

Обоснуем, что 2п 2 больше (я+1) 2 . Это можно сделать разными способами. Достаточно решить квадратное неравенство 2х 2 >(х+) 2 во множестве действительных чисел и увидеть, что все натуральные числа, большие либо равные 5, являются его решениями.

Мы поступим следующим образом. Найдем разность чисел 2п 2 и (я+1) 2:

Так как и > 5, то я+1 > 6, значит, (я+1) 2 > 36. Поэтому разность больше 0. Итак, 2я 2 > (я+1) 2 (2).

По свойствам неравенств из (I) и (2) следует, что 2*2" > (я+1) 2 , что и требовалось доказать для обоснования индуктивного перехода.

На основе метода математической индукции заключаем, что неравенство 2" > я 2 истинно для любых натуральных чисел я.

Рассмотрим еще одну форму метода математической индукции. Отличие заключается в индуктивном переходе. Для его осуществления требуется выполнить два шага:

  • 1) предположить, что предложение А(п) верно при всех значениях переменной я, меньших некоторого числар;
  • 2) из выдвинутого предположения вывести, что предложение А(п) справедливо и для числар.

Таким образом, индуктивный переход требует доказательства следствия: [(Уи?) А{п)] => А(р). Заметим, что следствие можно переписать в виде: [(Уп^р) А(п)] => А(р+ 1).

В первоначальной формулировке метода математической индукции при доказательстве предложения А(р) мы опирались только на «предыдущее» предложение А(р- 1). Данная здесь формулировка метода позволяет выводить А(р), считая, что все предложения А(п), где я меньшер , истинны.

Пример 5.5.10. Докажем теорему: «Сумма внутренних углов любого я-угольника равна 180°(я-2)».

Для выпуклого многоугольника теорему легко доказать, если разбить его диагоналями, проведенными из одной вершины, на треугольники. Однако для невыпуклого многоугольника такая процедура может быть невозможна.

Докажем теорему для произвольного многоугольника методом математической индукции. Будем считать известным следующее утверждение, которое, строго говоря, требует отдельного доказательства: «В любом //-угольнике существует диагональ, лежащая целиком во внугренней его части».

Вместо переменной // можно подставлять любые натуральные числа, которые больше либо равны 3. Для п=Ъ теорема справедлива, так как в треугольнике сумма углов равна 180°.

Возьмем некоторый /7-угольник (р> 4) и предположим, что сумма углов любого //-угольника, где // р, равна 180°(//-2). Докажем, что сумма углов //-угольника равна 180°(//-2).

Проведем диагональ //-угольника, лежащую внутри него. Она разобьет //-угольник на два многоугольника. Пусть один из них имеет к сторон, другой - к 2 сторон. Тогда к+к 2 -2 = р, так как полученные многоугольники имеют общей стороной проведенную диагональ, не являющуюся стороной исходного //-угольника.

Оба числа к и к 2 меньше //. Применим к полученным многоугольникам индуктивное предположение: сумма углов А]-угольника равна 180°-(?i-2), а сумма углов? 2 -угольника равна 180°-(Аг 2 -2). Тогда сумма углов //-угольника будет равна сумме этих чисел:

180°*(Аг|-2)-н 180°(Аг2-2) = 180 о (Аг,-ьАг 2 -2-2) = 180°-(//-2).

Индуктивный переход обоснован. На основе метода математической индукции теорема доказана для любого //-угольника (//>3).

Истинное знание во все времена основывалось на установлении закономерности и доказательстве её правдивости в определенных обстоятельствах. За столь длительный срок существования логических рассуждений были даны формулировки правил, а Аристотель даже составил список «правильных рассуждений». Исторически принято делить все умозаключения на два типа - от конкретного к множественному (индукция) и наоборот (дедукция). Следует отметить, что типы доказательств от частного к общему и от общего к частному существуют только во взаимосвязи и не могут быть взаимозаменяемы.

Индукция в математике

Термин "индукция" (induction) имеет латинские корни и дословно переводится как «наведение». При пристальном изучении можно выделить структуру слова, а именно латинскую приставку - in- (обозначает направленное действие внутрь или нахождение внутри) и -duction - введение. Стоит отметить, что существует два вида - полная и неполная индукции. Полную форму характеризуют выводы, сделанные на основании изучения всех предметов некоторого класса.

Неполную - выводы, применяемые ко всем предметам класса, но сделанные на основании изучения только некоторых единиц.

Полная математическая индукция - умозаключение, базирующееся на общем выводе обо всем классе каких-либо предметов, функционально связанных отношениями натурального ряда чисел на основании знания этой функциональной связи. При этом процесс доказательства проходит в три этапа:

  • на первом доказывается правильность положения математической индукции. Пример: f = 1, индукции;
  • следующий этап строится на предположении о правомерности положения для всех натуральных чисел. То есть, f=h, это предположение индукции;
  • на третьем этапе доказывается справедливость положения для числа f=h+1, на основании верности положения предыдущего пункта - это индукционный переход, или шаг математической индукции. Примером может служить так называемый если падает первая косточка в ряду (базис), то упадут все косточки в ряду (переход).

И в шутку, и всерьез

Для простоты восприятия примеры решения методом математической индукции обличают в форму задач-шуток. Таковой является задача «Вежливая очередь»:

  • Правила поведения запрещают мужчине занимать очередь перед женщиной (в такой ситуации ее пропускают вперед). Исходя из этого утверждения, если крайний в очереди - мужчина, то и все остальные - мужчины.

Ярким примером метода математической индукции является задача «Безразмерный рейс»:

  • Требуется доказать, что в маршрутку помещается любая численность людей. Правдиво утверждение, что один человек может разместиться внутри транспорта без затруднений (базис). Но как бы ни была заполнена маршрутка, 1 пассажир в нее всегда поместится (шаг индукции).

Знакомые окружности

Примеры решения методом математической индукции задач и уравнений встречаются довольно часто. Как иллюстрацию такого подхода, можно рассмотреть следующую задачу.

Условие : на плоскости размещено h окружностей. Требуется доказать, что при любом расположении фигур образуемая ими карта может быть правильно раскрашена двумя красками.

Решение : при h=1 истинность утверждения очевидна, поэтому доказательство будет строиться для количества окружностей h+1.

Примем допущение, что утверждение достоверно для любой карты, а на плоскости задано h+1 окружностей. Удалив из общего количества одну из окружностей, можно получить правильно раскрашенную двумя красками (черной и белой) карту.

При восстановлении удаленной окружности меняется цвет каждой области на противоположный (в указанном случае внутри окружности). Получается карта, правильно раскрашенная двумя цветами, что и требовалось доказать.

Примеры с натуральными числами

Ниже наглядно показано применение метода математической индукции.

Примеры решения:

Доказать, что при любом h правильным будет равенство:

1 2 +2 2 +3 2 +…+h 2 =h(h+1)(2h+1)/6.

1. Пусть h=1, значит:

R 1 =1 2 =1(1+1)(2+1)/6=1

Из этого следует, что при h=1 утверждение правильно.

2. При допущении, что h=d, получается уравнение:

R 1 =d 2 =d(d+1)(2d+1)/6=1

3. При допущении, что h=d+1, получается:

R d+1 =(d+1) (d+2) (2d+3)/6

R d+1 = 1 2 +2 2 +3 2 +…+d 2 +(d+1) 2 = d(d+1)(2d+1)/6+ (d+1) 2 =(d(d+1)(2d+1)+6(d+1) 2)/6=(d+1)(d(2d+1)+6(k+1))/6=

(d+1)(2d 2 +7d+6)/6=(d+1)(2(d+3/2)(d+2))/6=(d+1)(d+2)(2d+3)/6.

Таким образом, справедливость равенства при h=d+1 доказана, поэтому утверждение верно для любого натурального числа, что и показано в примере решения математической индукцией.

Задача

Условие : требуется доказательство того, что при любом значении h выражение 7 h -1 делимо на 6 без остатка.

Решение :

1. Допустим, h=1, в этом случае:

R 1 =7 1 -1=6 (т.е. делится на 6 без остатка)

Следовательно, при h=1 утверждение является справедливым;

2. Пусть h=d и 7 d -1 делится на 6 без остатка;

3. Доказательством справедливости утверждения для h=d+1 является формула:

R d +1 =7 d +1 -1=7∙7 d -7+6=7(7 d -1)+6

В данном случае первое слагаемое делится на 6 по допущению первого пункта, а второе слагаемое равно 6. Утверждение о том, что 7 h -1 делимо на 6 без остатка при любом натуральном h - справедливо.

Ошибочность суждений

Часто в доказательствах используют неверные рассуждения, в силу неточности используемых логических построений. В основном это происходит при нарушении структуры и логики доказательства. Примером неверного рассуждения может служить такая иллюстрация.

Задача

Условие : требуется доказательство того, что любая куча камней - не является кучкой.

Решение :

1. Допустим, h=1, в этом случае в кучке 1 камень и утверждение верно (базис);

2. Пусть при h=d верно, что куча камней - не является кучкой (предположение);

3. Пусть h=d+1, из чего следует, что при добавлении еще одного камня множество не будет являться кучкой. Напрашивается вывод, что предположение справедливо при всех натуральных h.

Ошибка заключается в том, что нет определения, какое количество камней образует кучку. Такое упущение называется поспешным обобщением в методе математической индукции. Пример это ясно показывает.

Индукция и законы логики

Исторически сложилось так, что всегда "шагают рука об руку". Такие научные дисциплины как логика, философия описывают их в виде противоположностей.

С точки зрения закона логики в индуктивных определениях просматривается опора на факты, а правдивость посылок не определяет правильность получившегося утверждения. Зачастую получаются умозаключения с определенной долей вероятности и правдоподобности, которые, естественно, должны быть проверены и подтверждены дополнительными исследованиями. Примером индукции в логике может быть утверждение:

В Эстонии - засуха, в Латвии - засуха, в Литве - засуха.

Эстония, Латвия и Литва - прибалтийские государства. Во всех прибалтийских государствах засуха.

Из примера можно заключить, что новую информацию или истину нельзя получить при помощи метода индукции. Все, на что можно рассчитывать - это некоторая возможная правдивость выводов. Причем, истинность посылок не гарантирует таких же заключений. Однако данный факт не обозначает, что индукция прозябает на задворках дедукции: огромное множество положений и научных законов обосновываются при помощи метода индукции. Примером может служить та же математика, биология и другие науки. Связано это по большей части с методом полной индукции, но в некоторых случаях применима и частичная.

Почтенный возраст индукции позволил ей проникнуть практически во все сферы деятельности человека - это и наука, и экономика, и житейские умозаключения.

Индукция в научной среде

Метод индукции требует щепетильного отношения, поскольку слишком многое зависит от количества изученных частностей целого: чем большее число изучено, тем достовернее результат. Исходя из этой особенности, научные законы, полученные методом индукции, достаточно долго проверяются на уровне вероятностных предположений для вычленения и изучения всех возможных структурных элементов, связей и воздействий.

В науке индукционное заключение основывается на значимых признаках, с исключением случайных положений. Данный факт важен в связи со спецификой научного познания. Это хорошо видно на примерах индукции в науке.

Различают два вида индукции в научном мире (в связи со способом изучения):

  1. индукция-отбор (или селекция);
  2. индукция - исключение (элиминация).

Первый вид отличается методичным (скрупулезным) отбором образцов класса (подклассов) из разных его областей.

Пример индукции этого вида следующий: серебро (или соли серебра) очищает воду. Вывод основывается на многолетних наблюдениях (своеобразный отбор подтверждений и опровержений - селекция).

Второй вид индукции строится на выводах, устанавливающих причинные связи и исключающих обстоятельства, не отвечающие ее свойствам, а именно всеобщность, соблюдение временной последовательности, необходимость и однозначность.

Индукция и дедукция с позиции философии

Если взглянуть на историческую ретроспективу, то термин "индукция" впервые был упомянут Сократом. Аристотель описывал примеры индукции в философии в более приближенном терминологическом словаре, но вопрос неполной индукции остается открытым. После гонений на аристотелевский силлогизм индуктивный метод стал признаваться плодотворным и единственно возможным в естествознании. Отцом индукции как самостоятельного особого метода считают Бэкона, однако ему не удалось отделить, как того требовали современники, индукцию от дедуктивного метода.

Дальнейшей разработкой индукции занимался Дж. Милль, который рассматривал индукционную теорию с позиции четырех основных методов: согласия, различия, остатков и соответствующих изменений. Неудивительно, что на сегодняшний день перечисленные методы при их детальном рассмотрении являются дедуктивными.

Осознание несостоятельности теорий Бэкона и Милля привело ученых к исследованию вероятностной основы индукции. Однако и здесь не обошлось без крайностей: были предприняты попытки свести индукцию к теории вероятности со всеми вытекающими последствиями.

Вотум доверия индукция получает при практическом применении в определенных предметных областях и благодаря метрической точности индуктивной основы. Примером индукции и дедукции в философии можно считать Закон всемирного тяготения. На дату открытия закона Ньютону удалось проверить его с точностью в 4 процента. А при проверке спустя более двухсот лет правильность была подтверждена с точностью до 0,0001 процента, хотя проверка велась все теми же индуктивными обобщениями.

Современная философия больше внимания уделяет дедукции, что продиктовано логичным желанием вывести из уже известного новые знания (или истины), не обращаясь к опыту, интуиции, а оперируя «чистыми» рассуждениями. При обращении к истинным посылкам в дедуктивном методе во всех случаях на выходе получается истинное утверждение.

Эта очень важная характеристика не должна затмевать ценность индуктивного метода. Поскольку индукция, опираясь на достижения опыта, становится и средством его обработки (включая обобщение и систематизацию).

Применение индукции в экономике

Индукция и дедукция давно используются как методы исследования экономики и прогнозирования ее развития.

Спектр использования метода индукции достаточно широк: изучение выполнения прогнозных показателей (прибыли, амортизация и т. д.) и общая оценка состояния предприятия; формирование эффективной политики продвижения предприятия на основе фактов и их взаимосвязей.

Тот же метод индукции применен в «картах Шухарта», где при предположении о разделении процессов на управляемые и неуправляемые утверждается, что рамки управляемого процесса малоподвижны.

Следует отметить, что научные законы обосновываются и подтверждаются при помощи метода индукции, а поскольку экономика является наукой, часто пользующейся математическим анализом, теорией рисков и статистическими данными, то совершенно неудивительно присутствие индукции в списке основных методов.

Примером индукции и дедукции в экономике может служить следующая ситуация. Увеличение цены на продукты питания (из потребительской корзины) и товары первой необходимости подталкивают потребителя к мысли о возникающей дороговизне в государстве (индукция). Вместе с тем, из факта дороговизны при помощи математических методов можно вывести показатели роста цен на отдельные товары или категории товаров (дедукция).

Чаще всего обращается к методу индукции управляющий персонал, руководители, экономисты. Для того чтобы можно было с достаточной правдивостью прогнозировать развитие предприятия, поведение рынка, последствия конкуренции, необходим индукционно-дедуктивный подход к анализу и обработке информации.

Наглядный пример индукции в экономике, относящийся к ошибочным суждениям:

  • прибыль компании сократилась на 30%;
    конкурирующая компания расширила линейку продукции;
    больше ничего не изменилось;
  • производственная политика конкурирующей компании стала причиной сокращения прибыли на 30%;
  • следовательно, требуется внедрить такую же производственную политику.

Пример является красочной иллюстрацией того, как неумелое использование метода индукции способствует разорению предприятия.

Дедукция и индукция в психологии

Поскольку существует метод, то, по логике вещей, имеет место и должным образом организованное мышление (для использования метода). Психология как наука, изучающая психические процессы, их формирование, развитие, взаимосвязи, взаимодействия, уделяет внимание «дедуктивному» мышлению, как одной из форм проявления дедукции и индукции. К сожалению, на страницах по психологии в сети Интернет практически отсутствует обоснование целостности дедуктивно-индуктивного метода. Хотя профессиональные психологи чаще сталкиваются с проявлениями индукции, а точнее - ошибочными умозаключениями.

Примером индукции в психологии, как иллюстрации ошибочных суждений, может служить высказывание: моя мать - обманывает, следовательно, все женщины - обманщицы. Еще больше можно почерпнуть «ошибочных» примеров индукции из жизни:

  • учащийся ни на что не способен, если получил двойку по математике;
  • он - дурак;
  • он - умный;
  • я могу все;

И многие другие оценочные суждения, выведенные на абсолютно случайных и, порой, малозначительных посылах.

Следует отметить: когда ошибочность суждений человека доходит до абсурда, появляется фронт работы для психотерапевта. Один из примеров индукции на приеме у специалиста:

«Пациент абсолютно уверен в том, что красный цвет несет для него только опасность в любых проявлениях. Как следствие, человек исключил из своей жизни данную цветовую гамму - насколько это возможно. В домашней обстановке возможностей для комфортного проживания много. Можно отказаться от всех предметов красного цвета или заменить их на аналоги, выполненные в другой цветовой гамме. Но в общественных местах, на работе, в магазине - невозможно. Попадая в ситуацию стресса, пациент каждый раз испытывает «прилив» абсолютно разных эмоциональных состояний, что может представлять опасность для окружающих».

Этот пример индукции, причем неосознанной, называется «фиксированные идеи». В случае если такое происходит с психически здоровым человеком, можно говорить о недостатке организованности мыслительной деятельности. Способом избавления от навязчивых состояний может стать элементарное развитие дедуктивного мышления. В иных случаях с такими пациентами работают психиатры.

Приведенные примеры индукции свидетельствуют о том, что «незнание закона не освобождает от последствий (ошибочных суждений)».

Психологи, работая над темой дедуктивного мышления, составили список рекомендаций, призванный помочь людям освоить данный метод.

Первым пунктом значится решение задач. Как можно было убедиться, та форма индукции, которая употребляется в математике, может считаться «классической», и использование этого метода способствует «дисциплинированности» ума.

Следующим условием развития дедуктивного мышления является расширение кругозора (кто ясно мыслит, тот ясно излагает). Данная рекомендация направляет «страждущих» в скарбницы наук и информации (библиотеки, сайты, образовательные инициативы, путешествия и т. д.).

Отдельно следует упомянуть о так называемой «психологической индукции». Этот термин, хотя и нечасто, можно встретить на просторах интернета. Все источники не дают хотя бы краткую формулировку определения этого термина, но ссылаются на «примеры из жизни», при этом выдавая за новый вид индукции то суггестию, то некоторые формы психических заболеваний, то крайние состояния психики человека. Из всего перечисленного понятно, что попытка вывести «новый термин», опираясь на ложные (зачастую не соответствующие действительности) посылки, обрекает экспериментатора на получение ошибочного (или поспешного) утверждения.

Следует отметить, что отсылка к экспериментам 1960 года (без указания места проведения, фамилий экспериментаторов, выборки испытуемых и самое главное - цели эксперимента) выглядит, мягко говоря, неубедительно, а утверждение о том, что мозг воспринимает информацию, минуя все органы восприятия (фраза «испытывает воздействие» в данном случае вписалась бы более органично), заставляет задуматься над легковерностью и некритичностью автора высказывания.

Вместо заключения

Царица наук - математика, не зря использует все возможные резервы метода индукции и дедукции. Рассмотренные примеры позволяют сделать вывод о том, что поверхностное и неумелое (бездумное, как еще говорят) применение даже самых точных и надежных методов приводит всегда к ошибочным результатам.

В массовом сознании метод дедукции ассоциируется со знаменитым Шерлоком Холмсом, который в своих логических построениях чаще использует примеры индукции, в нужных ситуациях пользуясь дедукцией.

В статье были рассмотрены примеры применения этих методов в различных науках и сферах жизнедеятельности человека.