Нормальное и общее уравнение плоскости в пространстве. Задача C2: уравнение плоскости через определитель

Рассмотрим в пространстве плоскость Q. Положение ее вполне определяется заданием вектора N, перпендикулярного этой плоскости, и некоторой фиксированной точки лежащей в плоскости Q. Вектор N, перпендикулярный плоскости Q, называется нормальным вектором этой плоскости. Если обозначить через А, В и С проекции нормального вектора N, то

Выведем уравнение плоскости Q, проходящей через данную точку и имеющей данный нормальный вектор . Для этого рассмотрим вектор соединяющий точку с произвольной точкой плоскости Q (рис. 81).

При любом положении точки М на плоскости Q вектор МХМ перпендикулярен нормальному вектору N плоскости Q. Поэтому скалярное произведение Запишем скалярное произведение через проекции. Так как , а вектор , то

и, следовательно,

Мы показали, что координаты любой точки плоскости Q удовлетворяют уравнению (4). Нетрудно заметить, что координаты точек, не лежащих на плоскости Q, этому уравнению не удовлетворяют (в последнем случае ). Следовательно, нами получено искомое уравнение плоскости Q. Уравнение (4) называется уравнением плоскости, проходящей через данную точку. Оно первой степени относительно текущих координат

Итак, мы показали, что всякой плоскости соответствует уравнение первой степени относительно текущих координат.

Пример 1. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору .

Решение. Здесь . На основании формулы (4) получим

или, после упрощения,

Придавая коэффициентам А, В и С уравнения (4) различные значения, мы можем получить уравнение любой плоскости, проходящей через точку . Совокупность плоскостей, проходящих через данную точку, называется связкой плоскостей. Уравнение (4), в котором коэффициенты А, В и С могут принимать любые значения, называются уравнением связки плоскостей.

Пример 2. Составить уравнение плоскости, проходящей через три точки , (рис. 82).

Решение. Напишем уравнение связки плоскостей, проходящих через точку

Можно задавать разными способами (одной точкой и вектором, двумя точками и вектором, тремя точками и др.). Именно с учетом этого уравнение плоскости может иметь различные виды. Также при соблюдении определенных условий плоскости могут быть параллельными, перпендикулярными, пересекающимися и т.д. Об этом и поговорим в данной статье. Мы научимся составлять общее уравнение плоскости и не только.

Нормальный вид уравнения

Допустим, есть пространство R 3 , которое имеет прямоугольную координатную систему XYZ. Зададим вектор α, который будет выпущен из начальной точки О. Через конец вектора α проведем плоскость П, которая будет ему перпендикулярна.

Обозначим на П произвольную точку Q=(х,у,z). Радиус-вектор точки Q подпишем буквой р. При этом длина вектора α равняется р=IαI и Ʋ=(cosα,cosβ,cosγ).

Это единичный вектор, который направлен в сторону, как и вектор α. α, β и γ - это углы, которые образуются между вектором Ʋ и положительными направлениями осей пространства х, у, z соответственно. Проекция какой-либо точки QϵП на вектор Ʋ является постоянной величиной, которая равна р: (р,Ʋ) = р(р≥0).

Указанное уравнение имеет смысл, когда р=0. Единственное, плоскость П в этом случае будет пересекать точку О (α=0), которая является началом координат, и единичный вектор Ʋ, выпущенный из точки О, будет перпендикулярен к П, несмотря на его направление, что означает, что вектор Ʋ определяется с точностью до знака. Предыдущее уравнение является уравнением нашей плоскости П, выраженным в векторной форме. А вот в координатах его вид будет таким:

Р здесь больше или равно 0. Мы нашли уравнение плоскости в пространстве в нормальном виде.

Общее уравнение

Если уравнение в координатах умножим на любое число, которое не равно нулю, получим уравнение, эквивалентное данному, определяющее ту самую плоскость. Оно будет иметь такой вид:

Здесь А, В, С - это числа, одновременно отличные от нуля. Это уравнение именуется как уравнение плоскости общего вида.

Уравнения плоскостей. Частные случаи

Уравнение в общем виде может видоизменяться при наличии дополнительных условий. Рассмотрим некоторые из них.

Предположим, что коэффициент А равен 0. Это означает, что данная плоскость параллельна заданной оси Ох. В этом случае вид уравнения изменится: Ву+Cz+D=0.

Аналогично вид уравнения будет изменяться и при следующих условиях:

  • Во-первых, если В=0, то уравнение изменится на Ах+Cz+D=0, что будет свидетельствовать о параллельности к оси Оу.
  • Во-вторых, если С=0, то уравнение преобразуется в Ах+Ву+D=0, что будет говорить о параллельности к заданной оси Oz.
  • В-третьих, если D=0, уравнение будет выглядеть как Ах+Ву+Cz=0, что будет означать, что плоскость пересекает О (начало координат).
  • В-четвертых, если A=B=0, то уравнение изменится на Cz+D=0, что будет доказывать параллельность к Oxy.
  • В-пятых, если B=C=0, то уравнение станет Ах+D=0, а это означает, что плоскость к Oyz параллельна.
  • В-шестых, если A=C=0, то уравнение приобретет вид Ву+D=0, то есть будет сообщать о параллельности к Oxz.

Вид уравнения в отрезках

В случае когда числа А, В, С, D отличны от нуля, вид уравнения (0) может быть следующим:

х/а + у/b + z/с = 1,

в котором а = -D/А, b = -D/В, с = -D/С.

Получаем в итоге Стоит отметить, что данная плоскость будет пересекать ось Ох в точке с координатами (а,0,0), Оу - (0,b,0), а Oz - (0,0,с).

С учетом уравнения х/а + у/b + z/с = 1 нетрудно визуально представить размещение плоскости относительно заданной координатной системы.

Координаты нормального вектора

Нормальный вектор n к плоскости П имеет координаты, которые являются коэффициентами общего уравнения данной плоскости, то есть n (А,В,С).

Для того чтобы определить координаты нормали n, достаточно знать общее уравнение заданной плоскости.

При использовании уравнения в отрезках, которое имеет вид х/а + у/b + z/с = 1, как и при использовании общего уравнения, можно записать координаты любого нормального вектора заданной плоскости: (1/а + 1/b + 1/с).

Стоит отметить, что нормальный вектор помогает решить разнообразные задачи. К самым распространенным относятся задачи, заключающиеся в доказательстве перпендикулярности или параллельности плоскостей, задачи по нахождению углов между плоскостями или углов между плоскостями и прямыми.

Вид уравнения плоскости согласно координатам точки и нормального вектора

Ненулевой вектор n, перпендикулярный заданной плоскости, называют нормальным (нормалью) для заданной плоскости.

Предположим, что в координатном пространстве (прямоугольной координатной системе) Oxyz заданы:

  • точка Мₒ с координатами (хₒ,уₒ,zₒ);
  • нулевой вектор n=А*i+В*j+С*k.

Нужно составить уравнение плоскости, которая будет проходить через точку Мₒ перпендикулярно нормали n.

В пространстве выберем любую произвольную точку и обозначим ее М (х у,z). Пускай радиус-вектор всякой точки М (х,у,z) будет r=х*i+у*j+z*k, а радиус-вектор точки Мₒ (хₒ,уₒ,zₒ) - rₒ=хₒ*i+уₒ*j+zₒ*k. Точка М будет принадлежать заданной плоскости, если вектор МₒМ будет перпендикулярен вектору n. Запишем условие ортогональности при помощи скалярного произведения:

[МₒМ, n] = 0.

Поскольку МₒМ = r-rₒ, векторное уравнение плоскости выглядеть будет так:

Данное уравнение может иметь и другую форму. Для этого используются свойства скалярного произведения, а преобразовывается левая сторона уравнения. = - . Если обозначить как с, то получится следующее уравнение: - с = 0 или = с, которое выражает постоянство проекций на нормальный вектор радиус-векторов заданных точек, которые принадлежат плоскости.

Теперь можно получить координатный вид записи векторного уравнения нашей плоскости = 0. Поскольку r-rₒ = (х-хₒ)*i + (у-уₒ)*j + (z-zₒ)*k, а n = А*i+В*j+С*k, мы имеем:

Выходит, у нас образовывается уравнение плоскости, проходящей через точку перпендикулярно нормали n:

А*(х- хₒ)+В*(у- уₒ)С*(z-zₒ)=0.

Вид уравнения плоскости согласно координатам двух точек и вектора, коллинеарного плоскости

Зададим две произвольные точки М′ (х′,у′,z′) и М″ (х″,у″,z″), а также вектор а (а′,а″,а‴).

Теперь мы сможем составить уравнение заданной плоскости, которая будет проходить через имеющиеся точки М′ и М″, а также всякую точку М с координатами (х,у,z) параллельно заданному вектору а.

При этом векторы М′М={х-х′;у-у′;z-z′} и М″М={х″-х′;у″-у′;z″-z′} должны быть компланарными с вектором а=(а′,а″,а‴), а это значит, что (М′М, М″М, а)=0.

Итак, наше уравнение плоскости в пространстве будет выглядеть так:

Вид уравнения плоскости, пересекающей три точки

Допустим, у нас есть три точки: (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴), которые не принадлежат одной прямой. Необходимо написать уравнение плоскости, проходящей через заданные три точки. Теория геометрии утверждает, что такого рода плоскость действительно существует, вот только она единственная и неповторимая. Поскольку эта плоскость пересекает точку (х′,у′,z′), вид ее уравнения будет следующим:

Здесь А, В, С отличные от нуля одновременно. Также заданная плоскость пересекает еще две точки: (х″,у″,z″) и (х‴,у‴,z‴). В связи с этим должны выполняться такого рода условия:

Сейчас мы можем составить однородную систему с неизвестными u, v, w:

В нашем случае х,у или z выступает произвольной точкой, которая удовлетворяет уравнение (1). Учитывая уравнение (1) и систему из уравнений (2) и (3), системе уравнений, указанной на рисунке выше, удовлетворяет вектор N (А,В,С), который является нетривиальным. Именно потому определитель данной системы равняется нулю.

Уравнение (1), которое у нас получилось, это и есть уравнение плоскости. Через 3 точки она точно проходит, и это легко проверить. Для этого нужно разложить наш определитель по элементам, находящимся в первой строке. Из существующих свойств определителя вытекает, что наша плоскость одновременно пересекает три изначально заданные точки (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴). То есть мы решили поставленную перед нами задачу.

Двухгранный угол между плоскостями

Двухгранный угол представляет собой пространственную геометрическую фигуру, образованную двумя полуплоскостями, которые исходят из одной прямой. Иными словами, это часть пространства, которая ограничивается данными полуплоскостями.

Допустим, у нас имеются две плоскости со следующими уравнениями:

Нам известно, что векторы N=(А,В,С) и N¹=(А¹,В¹,С¹) перпендикулярны согласно заданным плоскостям. В связи с этим угол φ меж векторами N и N¹ равняется углу (двухгранному), который находится между этими плоскостями. Скалярное произведение имеет вид:

NN¹=|N||N¹|cos φ,

именно потому

cosφ= NN¹/|N||N¹|=(АА¹+ВВ¹+СС¹)/((√(А²+В²+С²))*(√(А¹)²+(В¹)²+(С¹)²)).

Достаточно учесть, что 0≤φ≤π.

На самом деле две плоскости, которые пересекаются, образуют два угла (двухгранных): φ 1 и φ 2 . Сумма их равна π (φ 1 + φ 2 = π). Что касается их косинусов, то их абсолютные величины равны, но различаются они знаками, то есть cos φ 1 =-cos φ 2 . Если в уравнении (0) заменить А, В и С на числа -А, -В и -С соответственно, то уравнение, которое мы получим, будет определять эту же плоскость, единственное, угол φ в уравнении cos φ= NN 1 /|N||N 1 | будет заменен на π-φ.

Уравнение перпендикулярной плоскости

Перпендикулярными называются плоскости, между которыми угол равен 90 градусов. Используя материал, изложенный выше, мы можем найти уравнение плоскости, перпендикулярной другой. Допустим, у нас имеются две плоскости: Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D=0. Мы можем утверждать, что перпендикулярными они будут, если cosφ=0. Это значит, что NN¹=АА¹+ВВ¹+СС¹=0.

Уравнение параллельной плоскости

Параллельными называются две плоскости, которые не содержат общих точек.

Условие (их уравнения те же, что и в предыдущем пункте) заключается в том, что векторы N и N¹, которые к ним перпендикулярны, коллинеарные. А это значит, что выполняются следующие условия пропорциональности:

А/А¹=В/В¹=С/С¹.

Если условия пропорциональности являются расширенными - А/А¹=В/В¹=С/С¹=DD¹,

это свидетельствует о том, что данные плоскости совпадают. А это значит, что уравнения Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D¹=0 описывают одну плоскость.

Расстояние до плоскости от точки

Допустим, у нас есть плоскость П, которая задана уравнением (0). Необходимо найти до нее расстояние от точки с координатами (хₒ,уₒ,zₒ)=Qₒ. Чтобы это сделать, нужно привести уравнение плоскости П в нормальный вид:

(ρ,v)=р (р≥0).

В данном случае ρ (х,у,z) является радиус-вектором нашей точки Q, расположенной на П, р - это длина перпендикуляра П, который был выпущен из нулевой точки, v - это единичный вектор, который расположен в направлении а.

Разница ρ-ρº радиус-вектора какой-нибудь точки Q=(х,у,z), принадлежащий П, а также радиус-вектора заданной точки Q 0 =(хₒ,уₒ,zₒ) является таким вектором, абсолютная величина проекции которого на v равняется расстоянию d, которое нужно найти от Q 0 =(хₒ,уₒ,zₒ) до П:

D=|(ρ-ρ 0 ,v)|, но

(ρ-ρ 0 ,v)= (ρ,v)-(ρ 0 ,v) =р-(ρ 0 ,v).

Вот и получается,

d=|(ρ 0 ,v)-р|.

Таким образом, мы найдем абсолютное значение полученного выражения, то есть искомое d.

Используя язык параметров, получаем очевидное:

d=|Ахₒ+Вуₒ+Czₒ|/√(А²+В²+С²).

Если заданная точка Q 0 находится по другую сторону от плоскости П, как и начало координат, то между вектором ρ-ρ 0 и v находится следовательно:

d=-(ρ-ρ 0 ,v)=(ρ 0 ,v)-р>0.

В случае когда точка Q 0 совместно с началом координат располагается по одну и ту же сторону от П, то создаваемый угол острый, то есть:

d=(ρ-ρ 0 ,v)=р - (ρ 0 , v)>0.

В итоге получается, что в первом случае (ρ 0 ,v)>р, во втором (ρ 0 ,v)<р.

Касательная плоскость и ее уравнение

Касающаяся плоскость к поверхности в точке касания Мº - это плоскость, содержащая все возможные касательные к кривым, проведенным через эту точку на поверхности.

При таком виде уравнения поверхности F(х,у,z)=0 уравнение касательной плоскости в касательной точке Мº(хº,уº,zº) будет выглядеть так:

F х (хº,уº,zº)(х- хº)+ F х (хº, уº, zº)(у- уº)+ F х (хº, уº,zº)(z-zº)=0.

Если задать поверхность в явной форме z=f (х,у), то касательная плоскость будет описана уравнением:

z-zº =f(хº, уº)(х- хº)+f(хº, уº)(у- уº).

Пересечение двух плоскостей

В расположена система координат (прямоугольная) Oxyz, даны две плоскости П′ и П″, которые пересекаются и не совпадают. Поскольку любая плоскость, находящаяся в прямоугольной координатной системе, определяется общим уравнением, будем полагать, что П′ и П″ задаются уравнениями А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. В таком случае имеем нормаль n′ (А′,В′,С′) плоскости П′ и нормаль n″ (А″,В″,С″) плоскости П″. Поскольку наши плоскости не параллельны и не совпадают, то эти векторы являются не коллинеарными. Используя язык математики, мы данное условие можем записать так: n′≠ n″ ↔ (А′,В′,С′) ≠ (λ*А″,λ*В″,λ*С″), λϵR. Пускай прямая, которая лежит на пересечении П′ и П″, будет обозначаться буквой а, в этом случае а = П′ ∩ П″.

а - это прямая, состоящая из множества всех точек (общих) плоскостей П′ и П″. Это значит, что координаты любой точки, принадлежащей прямой а, должны одновременно удовлетворять уравнения А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. Значит, координаты точки будут частным решением следующей системы уравнений:

В итоге получается, что решение (общее) этой системы уравнений будет определять координаты каждой из точек прямой, которая будет выступать точкой пересечения П′ и П″, и определять прямую а в координатной системе Oxyz (прямоугольной) в пространстве.

В этом уроке мы рассмотрим, как с помощью определителя составить уравнение плоскости . Если вы не знаете, что такое определитель, зайдите в первую часть урока - «Матрицы и определители ». Иначе вы рискуете ничего не понять в сегодняшнем материале.

Уравнение плоскости по трем точкам

Зачем вообще нужно уравнение плоскости? Все просто: зная его, мы легко высчитаем углы, расстояния и прочую хрень в задаче C2. В общем, без этого уравнения не обойтись. Поэтому сформулируем задачу:

Задача. В пространстве даны три точки, не лежащие на одной прямой. Их координаты:

M = (x 1 , y 1 , z 1);
N = (x 2 , y 2 , z 2);
K = (x 3 , y 3 , z 3);

Требуется составить уравнение плоскости, проходящей через эти три точки. Причем уравнение должно иметь вид:

Ax + By + Cz + D = 0

где числа A , B , C и D - коэффициенты, которые, собственно, и требуется найти.

Ну и как получить уравнение плоскости, если известны только координаты точек? Самый простой способ - подставить координаты в уравнение Ax + By + Cz + D = 0. Получится система из трех уравнений, которая легко решается.

Многие ученики считают такое решение крайне утомительным и ненадежным. Прошлогодний ЕГЭ по математике показал, что вероятность допустить вычислительную ошибку действительно велика.

Поэтому наиболее продвинутые учителя стали искать более простые и изящные решения. И ведь нашли! Правда, полученный прием скорее относится к высшей математике. Лично мне пришлось перерыть весь Федеральный перечень учебников, чтобы убедиться, что мы вправе применять этот прием без каких-либо обоснований и доказательств.

Уравнение плоскости через определитель

Хватит лирики, приступаем к делу. Для начала - теорема о том, как связаны определитель матрицы и уравнение плоскости.

Теорема. Пусть даны координаты трех точек, через которые надо провести плоскость: M = (x 1 , y 1 , z 1); N = (x 2 , y 2 , z 2); K = (x 3 , y 3 , z 3). Тогда уравнение этой плоскости можно записать через определитель:

Для примера попробуем найти пару плоскостей, которые реально встречаются в задачах С2. Взгляните, как быстро все считается:

A 1 = (0, 0, 1);
B = (1, 0, 0);
C 1 = (1, 1, 1);

Составляем определитель и приравниваем его к нулю:


Раскрываем определитель:

a = 1 · 1 · (z − 1) + 0 · 0 · x + (−1) · 1 · y = z − 1 − y;
b = (−1) · 1 · x + 0 · 1 · (z − 1) + 1 · 0 · y = −x;
d = a − b = z − 1 − y − (−x ) = z − 1 − y + x = x − y + z − 1;
d = 0 ⇒ x − y + z − 1 = 0;

Как видите, при расчете числа d я немного «причесал» уравнение, чтобы переменные x , y и z шли в правильной последовательности. Вот и все! Уравнение плоскости готово!

Задача. Составьте уравнение плоскости, проходящей через точки:

A = (0, 0, 0);
B 1 = (1, 0, 1);
D 1 = (0, 1, 1);

Сразу подставляем координаты точек в определитель:

Снова раскрываем определитель:

a = 1 · 1 · z + 0 · 1 · x + 1 · 0 · y = z;
b = 1 · 1 · x + 0 · 0 · z + 1 · 1 · y = x + y;
d = a − b = z − (x + y ) = z − x − y;
d = 0 ⇒ z − x − y = 0 ⇒ x + y − z = 0;

Итак, уравнение плоскости снова получено! Опять же, на последнем шаге пришлось поменять в нем знаки, чтобы получить более «красивую» формулу. Делать это в настоящем решении совсем не обязательно, но все-таки рекомендуется - чтобы упростить дальнейшее решение задачи.

Как видите, составлять уравнение плоскости теперь намного проще. Подставляем точки в матрицу, считаем определитель - и все, уравнение готово.

На этом можно было бы закончить урок. Однако многие ученики постоянно забывают, что стоит внутри определителя. Например, в какой строчке стоит x 2 или x 3 , а в какой - просто x . Чтобы окончательно разобраться с этим, давайте проследим, откуда берется каждое число.

Откуда берется формула с определителем?

Итак, разбираемся, откуда возникает такое суровое уравнение с определителем. Это поможет вам запомнить его и успешно применять.

Все плоскости, которые встречаются в задаче C2, задаются тремя точками. Эти точки всегда отмечены на чертеже, либо даже указаны прямо в тексте задачи. В любом случае, для составления уравнения нам потребуется выписать их координаты:

M = (x 1 , y 1 , z 1);
N = (x 2 , y 2 , z 2);
K = (x 3 , y 3 , z 3).

Рассмотрим еще одну точку на нашей плоскости с произвольными координатами:

T = (x , y , z )

Берем любую точку из первой тройки (например, точку M ) и проведем из нее векторы в каждую из трех оставшихся точек. Получим три вектора:

MN = (x 2 − x 1 , y 2 − y 1 , z 2 − z 1);
MK = (x 3 − x 1 , y 3 − y 1 , z 3 − z 1);
MT = (x − x 1 , y − y 1 , z − z 1).

Теперь составим из этих векторов квадратную матрицу и приравняем ее определитель к нулю. Координаты векторов станут строчками матрицы - и мы получим тот самый определитель, который указан в теореме:

Эта формула означает, что объем параллелепипеда, построенного на векторах MN , MK и MT , равен нулю. Следовательно, все три вектора лежат в одной плоскости. В частности, и произвольная точка T = (x , y , z ) - как раз то, что мы искали.

Замена точек и строк определителя

У определителей есть несколько замечательных свойств, которые еще более упрощают решение задачи C2 . Например, нам неважно, из какой точки проводить векторы. Поэтому следующие определители дают такое же уравнение плоскости, как и приведенный выше:

Также можно менять местами строчки определителя. Уравнение при этом останется неизменным. Например, многие любят записывать строчку с координатами точки T = (x ; y ; z ) в самом верху. Пожалуйста, если вам так удобно:

Некоторых смущает, что в одной из строчек присутствуют переменные x , y и z , которые не исчезают при подстановке точек. Но они и не должны исчезать! Подставив числа в определитель, вы должны получить вот такую конструкцию:

Затем определитель раскрывается по схеме, приведенной в начале урока, и получается стандартное уравнение плоскости:

Ax + By + Cz + D = 0

Взгляните на пример. Он последний в сегодняшнем уроке. Я специально поменяю строчки местами, чтобы убедиться, что в ответе получится одно и то же уравнение плоскости.

Задача. Составьте уравнение плоскости, проходящей через точки:

B 1 = (1, 0, 1);
C = (1, 1, 0);
D 1 = (0, 1, 1).

Итак, рассматриваем 4 точки:

B 1 = (1, 0, 1);
C = (1, 1, 0);
D 1 = (0, 1, 1);
T = (x , y , z ).

Для начала составим стандартный определитель и приравниваем его к нулю:

Раскрываем определитель:

a = 0 · 1 · (z − 1) + 1 · 0 · (x − 1) + (−1) · (−1) · y = 0 + 0 + y;
b = (−1) · 1 · (x − 1) + 1 · (−1) · (z − 1) + 0 · 0 · y = 1 − x + 1 − z = 2 − x − z;
d = a − b = y − (2 − x − z ) = y − 2 + x + z = x + y + z − 2;
d = 0 ⇒ x + y + z − 2 = 0;

Все, мы получили ответ: x + y + z − 2 = 0 .

Теперь давайте переставим пару строк в определителе и посмотрим, что произойдет. Например, запишем строчку с переменными x , y , z не внизу, а вверху:

Вновь раскрываем полученный определитель:

a = (x − 1) · 1 · (−1) + (z − 1) · (−1) · 1 + y · 0 · 0 = 1 − x + 1 − z = 2 − x − z;
b = (z − 1) · 1 · 0 + y · (−1) · (−1) + (x − 1) · 1 · 0 = y;
d = a − b = 2 − x − z − y;
d = 0 ⇒ 2 − x − y − z = 0 ⇒ x + y + z − 2 = 0;

Мы получили точно такое же уравнение плоскости: x + y + z − 2 = 0. Значит, оно действительно не зависит от порядка строк. Осталось записать ответ.

Итак, мы убедились, что уравнение плоскости не зависит от последовательности строк. Можно провести аналогичные вычисления и доказать, что уравнение плоскости не зависит и от точки, координаты которой мы вычитаем из остальных точек.

В рассмотренной выше задаче мы использовали точку B 1 = (1, 0, 1), но вполне можно было взять C = (1, 1, 0) или D 1 = (0, 1, 1). В общем, любую точку с известными координатами, лежащую на искомой плоскости.

  • 24. Линейная зависимость столбцов матрицы. Свойства Линейная зависимость и независимость строк (столбцов) матрицы
  • Свойства линейно зависимых и линейно независимых столбцов матриц
  • 25. Базисный минор. Теорема о базисном миноре. Теорема о ранге.
  • 26. Системы линейных уравнений. Теорема Кронекера - Капелли о совместимости систем.
  • 27. Однородные системы линейных уравнений. Свойства их решений. Общее решение ослу.
  • 28. Фундаментальная система решений ослу
  • 29. Неоднородные системы линейных уравнений. Свойства их решений. Построение общего решения нслу.
  • 30. Линейные пространства. Определение. Примеры, следствия из аксиом.
  • 31. Линейная зависимость векторов линейного пространства. Свойства
  • 32. Базис линейного пространства. Размерность
  • 33. Единственность разложения векторов по базису. Координаты. Действия над векторами в координатной форме.
  • 34. Изменение координат вектора при переходе к новому базису. Матрица перехода.
  • 35. Евклидово пространство. Определение, примеры. Модуль вектора. Угол между векторами. Неравенство Коши-Буняковского.
  • 36. Линейный оператор. Матрица линейного оператора. Изменение матрицы линейного оператора при переходе к новому базису.
  • 37. Образ и ядро линейного оператора. Ранг линейного оператора.
  • 38.В отдельном файле.
  • 39. Собственные векторы и собственные значения линейного оператора. Их свойства
  • 40. Последовательность. Предел последовательности. Ограниченные, неограниченные, бесконечно малые и бесконечно большие последовательности. Определение
  • [Править]Примеры
  • [Править]Операции над последовательностями
  • [Править]Подпоследовательности
  • [Править]Примеры
  • [Править]Свойства
  • [Править]Предельная точка последовательности
  • [Править]Предел последовательности
  • [Править]Некоторые виды последовательностей
  • [Править]Ограниченные и неограниченные последовательности
  • [Править]Критерий ограниченности числовой последовательности
  • [Править]Свойства ограниченных последовательностей
  • [Править]Бесконечно большие и бесконечно малые последовательности
  • [Править]Свойства бесконечно малых последовательностей
  • [Править]Сходящиеся и расходящиеся последовательности
  • [Править]Свойства сходящихся последовательностей
  • 41. Понятие функции. Способы задания функции.
  • 42. Предел функции в точке, в бесконечности. Геометрическая интерпретация. Определения и примеры.
  • 43. Теоремы о пределах:
  • 44. Непрерывные функции и их свойства:
  • Свойства Локальные
  • Глобальные
  • Теорема о сохранении знака для непрерывной функции
  • Доказательство
  • 45. Первый замечательный предел. Следствия. Теорема о пределе суммы, произведения и частного.
  • 46. Ограниченные функции и их свойства. Необходимое условие существования предела функции в точке.
  • 47. Бесконечно малые функции, их свойства. Леммы
  • Леммы о бесконечно малых
  • 48. Критерий существования предела функции в точке.
  • 49. Бесконечно большие функции, связь с бесконечно малыми функциями.
  • 50. Раскрытие неопределенностей. Второй замечательный предел.
  • 51. Эквивалентные бесконечно малые функции. Таблица эквивалентных бесконечно малых функций.
  • 52. Теорема о применении эквивалентных бесконечно малых к вычислению пределов.
  • 3.2. Основные формулы эквивалентности бесконечно малых.
  • 53. Односторонние пределы функции в точке. Односторонняя непрерывность функции в точке.
  • 54. Точки разрыва функции и их классификация.
  • 55. Свойства функций, непрерывных на отрезке.
  • 56. Задачи, приводящие к понятию производной. Понятие производной. Геометрический и физический смысл производной.
  • 1.1 Задачи, приводящие к понятию производной
  • , Если.
  • 57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
  • 57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
  • 58. Производная сложной функции.
  • 59. Дифференциал функции. Инвариантность формы записи первого дифференциала.
  • 60. Обратная функция и ее производная.
  • 60. Обратная функция и ее производная.
  • 61. Правила дифференцирования.
  • 63. Логарифмическое дифференцирование. Производная степенно-показательной функции.
  • 5.4. Производная степенно-показательной функции
  • 64. См. Отдельный файл.
  • 65. Теоремы о среднем – Ферма, Ролля.
  • 66. Теоремы о среднем – Лагранжа, Коши.
  • 67. Дифференциалы высших порядков. Неинвариантность формы записи.
  • 68. Правило Лопиталя. Раскрытие неопределенностей с использованием правила Лопиталя.
  • 69. Формула Тейлора. Разложение функции по формуле Тейлора.
  • 70. Монотонность функции. Условия монотонности.
  • 71. Экстремумы функции. Необходимое условие существования экстремума.
  • 72. Достаточные условия экстремума.
  • 73. Выпуклость и вогнутость графика функции. Точки перегиба.
  • 74. Асимптоты графика.
  • [Править]Виды асимптот графиков [править]Вертикальная
  • [Править]Горизонтальная
  • [Править]Наклонная
  • [Править]Нахождение асимптот
  • 76. Метод замены переменных в неопределенном интеграле.
  • 77. Интегрирование по частям в неопределенном интеграле. Классы функций, интегрируемых по частям.
  • 78. Рациональные дроби. Разложение рациональных дробей на сумму простейших.
  • 79. Интегрирование простейших рациональных дробей.
  • 80. Интегрирование тригонометрических функций.
  • 81. Интегрирование иррациональностей вида…
  • 82. Интегрирование иррациональностей вида…
  • 83. Понятие определенного интеграла, его геометрический смысл и свойства. Теорема о среднем.
  • 84. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
  • 85. Полярная система координат. Уравнения кривых в полярной системе координат.
  • Уравнение кривых в полярных координатах
  • Окружность
  • Полярная роза
  • Спираль Архимеда
  • Конические сечения
  • 86. Вычисление определенного интеграла. Применение его к вычислению площадей плоских фигур, длины дуги кривой.
  • 87. Вычисление объемов тел, объемов тел вращения.
  • 88. Приложение определенного интеграла к задачам физики.
  • 89. Несобственные интегралы I рода.
  • 89. Несобственные интегралы I рода.
  • Несобственные интегралы I рода
  • Геометрический смысл несобственного интеграла I рода
  • Примеры
  • 90. Несобственные интегралы II рода.
  • Геометрический смысл несобственных интегралов II рода
  • Нормальное уравнение плоскости.

    Общее уравнение плоскости вида называют нормальным уравнением плоскости , если длина вектора равна единице, то есть, , и .

    Часто можно видеть, что нормальное уравнение плоскости записывают в виде . Здесь - направляющие косинусы нормального вектора данной плоскости единичной длины, то есть , а p – неотрицательное число, равное расстоянию от начала координат до плоскости.

    Нормальное уравнение плоскости в прямоугольной системе координат Oxyz определяет плоскость, которая удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости . Если p=0 , то плоскость проходит через начало координат.

    Приведем пример нормального уравнения плоскости.

    Пусть плоскость задана в прямоугольной системе координат Oxyz общим уравнение плоскости вида . Это общее уравнение плоскости является нормальным уравнением плоскости. Действительно, и нормальный вектор этой плоскости имеет длину равную единице, так как .

    Уравнение плоскости в нормальном виде позволяет находить расстояние от точки до плоскости.

      Расстояние от точки до плоскости.

    Расстояние от точки до плоскости - это наименьшее из расстояний между этой точкой и точками плоскости. Известно, что расстояние от точки до плоскости равно длине перпендикуляра, опущенного из этой точки на плоскость.

    Если и начало координат лежат по разные стороны плоскости, в противоположном случае. Расстояние от точки до плоскости равно

      Взаимное расположение плоскостей. Условия параллельности и перпендикулярности плоскостей.

    Расстояние между параллельными плоскостями

    Связанные понятия

      Плоскости параллельны , если

    или (Векторное произведение)

      Плоскости перпендикулярны , если

    Или . (Скалярное произведение)

      Прямая в пространстве. Различные виды уравнения прямой.

    Уравнения прямой в пространстве – начальные сведения.

    Уравнение прямой на плоскости Oxy представляет собой линейное уравнение с двумя переменными x и y , которому удовлетворяют координаты любой точки прямой и не удовлетворяют координаты никаких других точек. С прямой в трехмерном пространстве дело обстоит немного иначе – не существует линейного уравнения с тремя переменными x , y и z , которому бы удовлетворяли только координаты точек прямой, заданной в прямоугольной системе координат Oxyz . Действительно, уравнение вида , гдеx , y и z – переменные, а A , B , C и D – некоторые действительные числа, причем А , В и С одновременно не равны нулю, представляет собой общее уравнение плоскости . Тогда встает вопрос: «Каким же образом можно описать прямую линию в прямоугольной системе координат Oxyz »?

    Ответ на него содержится в следующих пунктах статьи.

    Уравнения прямой в пространстве - это уравнения двух пересекающихся плоскостей.

    Напомним одну аксиому: если две плоскости в пространстве имеют общую точку, то они имеют общую прямую, на которой находятся все общие точки этих плоскостей. Таким образом, прямую линию в пространстве можно задать, указав две плоскости, пересекающиеся по этой прямой.

    Переведем последнее утверждение на язык алгебры.

    Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz и известно, что прямая a является линией пересечения двух плоскостей и, которым отвечают общие уравнения плоскости видаисоответственно. Так как прямаяa представляет собой множество всех общих точек плоскостей и, то координаты любой точки прямой a будут удовлетворять одновременно и уравнениюи уравнению, координаты никаких других точек не будут удовлетворять одновременно обоим уравнениям плоскостей. Следовательно, координаты любой точки прямойa в прямоугольной системе координат Oxyz представляют собой частное решение системы линейных уравнений вида , а общее решение системы уравненийопределяет координаты каждой точки прямойa , то есть, определяет прямую a .

    Итак, прямая в пространстве в прямоугольной системе координат Oxyz может быть задана системой из уравнений двух пересекающихся плоскостей .

    Вот пример задания прямой линии в пространстве с помощью системы двух уравнений - .

    Описание прямой линии уравнениями двух пересекающихся плоскостей отлично подходит принахождении координат точки пересечения прямой и плоскости , а также при нахождении координат точки пересечения двух прямых в пространстве .

    Рекомендуем продолжить изучение этой темы, обратившись к статье уравнения прямой в пространстве - уравнения двух пересекающихся плоскостей . В ней дана более детальная информация, подробно разобраны решения характерных примеров и задач, а также показан способ перехода к уравнениям прямой в пространстве другого вида.

    Следует отметить, что существуют различные способы задания прямой в пространстве , и на практике прямая чаще задается не двумя пересекающимися плоскостями, а направляющим вектором прямой и точкой, лежащей на этой прямой. В этих случаях проще получить канонические и параметрические уравнения прямой в пространстве. О них поговорим в следующих пунктах.

    Параметрические уравнения прямой в пространстве.

    Параметрические уравнения прямой в пространстве имеют вид ,

    где x 1 ,y 1 и z 1 – координаты некоторой точки прямой, a x , a y и a z (a x , a y и a z одновременно не равны нулю) - соответствующие координаты направляющего вектора прямой , а - некоторый параметр, который может принимать любые действительные значения.

    При любом значении параметра по параметрическим уравнениям прямой в пространстве мы можем вычислить тройку чисел,

    она будет соответствовать некоторой точке прямой (отсюда и название этого вида уравнений прямой). К примеру, при

    из параметрических уравнений прямой в пространстве получаем координаты x 1 , y 1 и z 1 : .

    В качестве примера рассмотрим прямую, которую задают параметрические уравнения вида . Эта прямая проходит через точку, а направляющий вектор этой прямой имеет координаты.

    Рекомендуем продолжить изучение темы, обратившись к материалу статьи параметрические уравнения прямой в пространстве . В ней показан вывод параметрических уравнений прямой в пространстве, разобраны частные случаи параметрических уравнений прямой в пространстве, даны графические иллюстрации, приведены развернутые решения характерных задач и указана связь параметрических уравнений прямой с другими видами уравнений прямой.

    Канонические уравнения прямой в пространстве.

    Разрешив каждое из параметрических уравнений прямой вида относительно параметра, легко перейти кканоническим уравнениям прямой в пространстве вида .

    Канонические уравнения прямой в пространстве определяют прямую, проходящую через точку, а направляющим вектором прямой является вектор. К примеру, уравнения прямой в каноническом видесоответствуют прямой, проходящей через точку пространства с координатами, направляющий вектор этой прямой имеет координаты.

    Следует отметить, что одно или два из чисел в канонических уравнениях прямой могут быть равны нулю (все три числаодновременно не могут быть равны нулю, так как направляющий вектор прямой не может быть нулевым). Тогда запись видасчитается формальной (так как в знаменателях одной или двух дробей будут нули) и ее следует понимать как, где.

    Если одно из чисел в канонических уравнениях прямой равно нулю, то прямая лежит в одной из координатных плоскостей, либо в плоскости ей параллельной. Если два из чиселравны нулю, то прямая либо совпадает с одной из координатных осей, либо параллельна ей. Например прямая, соответствующая каноническим уравнениям прямой в пространстве вида, лежит в плоскостиz=-2 , которая параллельна координатной плоскости Oxy , а координатная ось Oy определяется каноническими уравнениями .

    Графические иллюстрации этих случаев, вывод канонических уравнений прямой в пространстве, подробные решения характерных примеров и задач, а также переход от канонических уравнений прямой к другим уравнениям прямой в пространстве смотрите в статье канонические уравнения прямой в пространстве .

      Общее уравнение прямой. Переход от общего к каноническому уравнению.

    "

    – общее уравнение плоскости в пространстве

    Нормальный вектор плоскости

    Нормальным вектором плоскости назовем ненулевой вектор, ортогональный каждому вектору, лежащему в плоскости.

    Уравнение плоскости, проходящей через точкус заданным вектором нормали

    – уравнение плоскости, проходящей через точку M0 с заданным вектором нормали

    Направляющие векторы плоскости

    Два неколлинеарных вектора, параллельных плоскости, назовем направляющими векторами плоскости

    Параметрические уравнения плоскости

    – параметрическое уравнение плоскости в векторном виде

    – параметрическое уравнение плоскости в координатах

    Уравнение плоскости через заданную точку и два направляющих вектора

    –фиксированная точка

    –просто точка лол

    –компланарные, значит их смешанное произведение равно 0.

    Уравнение плоскости, проходящей через три заданные точки

    – уравнение плоскости через три точки

    Уравнение плоскости в отрезках

    – уравнение плоскости в отрезках

    Доказательство

    Для доказательства воспользуемся тем, что наша плоскость проходит через A,B,C, а нормальный вектор

    Подставим координаты точки и вектораnв уравнение плоскости с нормальным вектором

    Разделим все на и получим

    Такие дела.

    Нормальное уравнение плоскости

    – угол междуoxи нормальным вектором к плоскости, выходящим из О.

    – угол междуoyи нормальным вектором к плоскости, выходящим из О.

    – угол междуozи нормальным вектором к плоскости, выходящим из О.

    – расстояние от начала координат до плоскости.

    Доказательство или какая-то такая хуйня

    Знак противоположен D.

    Аналогично для остальных косинусов. Конец.

    Расстояние от точки до плоскости

    Точка S, плоскость

    – ориентированное расстояние от точкиSдо плоскости

    Если , тоSи О лежат по разные стороны от плоскости

    Если , тоSи О лежат по одну сторону

    Умножаем наn

    Взаимное расположение двух прямых в пространстве

    Угол между плоскостями

    При пересечении образуется две пары вертикальных двухгранных углов, наименьший называется углом между плоскостями

    Прямая в пространстве

    Прямая в пространстве может быть задана как

      Пересечение двух плоскостей:

      Параметрические уравнения прямой

    – параметрическое уравнение прямой в векторном виде

    – параметрическое уравнение прямой в координатах

      Каноническое уравнение

    – каноническое уравнение прямой.

    Уравнение прямой, проходящей через две заданные точки

    – каноническое уравнение прямой в векторном виде;

    Взаимное расположение двух прямых в пространстве

    Взаимное расположение прямой и плоскости в пространстве

    Угол между прямой и плоскостью

    Расстояние от точки до прямой в пространстве

    a– направляющий вектор нашей прямой.

    – произвольная точка, принадлежащая данной прямой

    – точка, до которой ищем расстояние.

    Расстояние между двумя скрещивающимися прямыми

    Расстояние между двумя параллельными прямыми

    М1 – точка, принадлежащая первой прямой

    М2 – точка, принадлежащая второй прямой

    Кривые и поверхности второго порядка

    Эллипсом назовем множество точек плоскости, сумма расстояний от которых до двух заданных точек (фокусов) есть величина постоянная.

    Каноническое уравнение эллипса

    Заменим на

    Разделим на

    Свойства эллипса

      Пересечение с осями координат

      Симметрия относительно

      1. Начала координат

      Эллипс представляет собой кривую, лежащую в ограниченной части плоскости

      Эллипс можно получить из окружности путем её растяжения или сжатия

      Параметрическое уравнение эллипса:

    – директрисы

    Гипербола

    Гиперболой назовем множество точек плоскости, для которых модуль разности расстояний до 2х заданных точек (фокусов) есть величина постоянная(2a)

    Делаем все то же самое, что и с эллипсом, получаем

    Заменяем на

    Делим на

    Свойства гиперболы

    ;

    – директрисы

    Асимптота

    Асимптота – прямая, к которой кривая неограниченно приближается, удаляясь в бесконечность.

    Парабола

    Свойства паработы

    Родство эллипса, гиперболы и параболы.

    Родство между этими кривыми имеет алгебраическое объяснение: все они задаются уравнениями второй степени. В любой системе координат уравнения этих кривых имеют вид: ax 2 +bxy+cy 2 +dx+ey+f=0, где a, b, c, d, e, f – числа

    Преобразование прямоугольных декартовых систем координат

    Параллельный перенос системы координат

    –O’ в старой системе координат

    –координаты точки в старой системе координат

    –координаты точки в новой системе координат

    Координаты точки в новой системе координат.

    Поворот в прямоугольной декартовой системе координат

    –новая система координат

    Матрица перехода от старого базиса к новому

    – (под первым столбцомI , под вторым –j ) матрица перехода от базисаI ,j к базисуI ,j

    Общий случай

      1 вариант

      1. Поворот системы координат

      2 вариант

      1. Поворот системы координат

        Параллельный перенос начала координат

    Общее уравнение линий второго порядка и его приведение к каноническому виду

    – общий вид уравнений кривой второго порядка

    Классификация кривых второго порядка

    Эллипсоид

    Сечения эллипсоида

    – эллипс

    – эллипс

    Эллипсоиды вращения

    Эллипсоидами вращения являются либо сплющенные, либо вытянутые сфероиды, в зависимости от того, вокруг чего вращаем.

    Однополосный гиперболоид

    Сечения однополосного гиперболоида

    – гипербола с действительной осьюoy

    – гипербола с действительной осью ох

    Получается эллипс при любых h. Такие дела.

    Однополосные гиперболоиды вращения

    Однополостный гиперболоид вращения может быть получен вращением гиперболы вокруг её мнимой оси.

    Двуполостный гиперболоид

    Сечения двуполостного гиперболоида

    – гипербола с действ. Осьюoz

    – гипербола с действительной осьюoz

    Конус

    – пара пересекающихся прямых

    – пара пересекающихся прямых

    Эллиптический параболоид

    - парабола

    – парабола

    Вращения

    Если , то эллиптический параболоид представляет собой поверхность вращения, образованную вращением параболы вокруг её оси симметрии.

    Гиперболический параболоид

    Парабола

    – парабола

        h>0 гипербола с действительной осью параллельной ох

        h<0 гипербола с действительной осью паралльной оу и мнимой ох

    Под цилиндром будем понимать поверхность, которая будет получаться при движении прямой в пространстве, не меняющая своего направления, если прямая движется относительно oz, то уравнение цилиндра есть уравнение сечения плоскостьюxoy.

    Эллиптический цилиндр

    Гиперболический цилиндр

    Параболический цилиндр

    Прямолинейные образующие поверхностей второго порядка

    Прямые, полностью лежащие на поверхности, называются прямолинейными образующими поверхности.

    Поверхности вращения

    Ебать ты лох

    Отображение

    Отображением назовем правило, по которому каждому элементу множества А ставится в соответствие один или несколько элементов множестваB. Если каждому ставится единственный элемент множества В, то отображение называетсяоднозначным , иначемногозначным .

    Преобразованием множества называется взаимнооднозначное отображение множества на себя

    Инъекция

    Инъекция или взаимно-однозначное отображение множества А на множество В

    (разным элементам а соответствуют разные элементы В) например y=x^2

    Сюръекция

    Сюръекция или отображение множества А на множество В

    Для каждого В существует хотя бы одно А(например синус)

    Каждому элементу множества В соответствует только один элемент множества А.(например y=x)